Wuhan coronavirus, called 2019-nCoV, is a newly emerged virus that infected more than 9692 people and leads to more than 213 fatalities by January 30, 2020. Currently, there is no effective treatment for this epidemic. However, the viral protease of a coronavirus is well-known to be essential for its replication and thus is an effective drug target. Fortunately, the sequence identity of the 2019-nCoV protease and that of severe-acute respiratory syndrome virus (SARS-CoV) is as high as 96.1%. We show that the protease inhibitor binding sites of 2019-nCoV and SARS-CoV are almost identical, which means all potential anti-SARS-CoV chemotherapies are also potential 2019-nCoV drugs. Here, we report a family of potential 2019-nCoV drugs generated by a machine intelligence-based generative network complex (GNC). The potential effectiveness of treating 2019-nCoV by using some existing HIV drugs is also analyzed.
Currently, there is no effective antiviral drugs nor vaccine for coronavirus disease 2019 caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to its high conservativeness and low similarity with human genes, SARS-CoV-2 main protease (M pro ) is one of the most favorable drug targets. However, the current understanding of the molecular mechanism of M pro inhibition is limited by the lack of reliable binding affinity ranking and prediction of existing structures of M pro -inhibitor complexes. This work integrates mathematics and deep learning (MathDL) to provide a reliable ranking of the binding affinities of 92 SARS-CoV-2 M pro inhibitor structures. We reveal that Gly143 residue in M pro is the most attractive site to form hydrogen bonds, followed by Cys145, Glu166, and His163. We also identify 45 targeted covalent bonding inhibitors. Validation on the PDBbind v2016 core set benchmark shows the MathDL has achieved the top performance with Pearson's correlation coefficient (Rp) being 0.858. Most importantly, MathDL is validated on a carefully curated SARS-CoV-2 inhibitor dataset with the averaged Rp as high as 0.751, which endows the reliability of the present binding affinity prediction. The present binding affinity ranking, interaction analysis, and fragment decomposition offer a foundation for future drug discovery efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.