We have analyzed the unusual electronic structure of Sr2FeMoO6 combining ab initio and model Hamiltonian approaches. Our results indicate that there are strong enhancements of the intra-atomic exchange strength at the Mo site as well as the antiferromagnetic coupling strength between Fe and Mo sites. We discuss the possibility of a negative effective Coulomb correlation strength ( U(eff)) at the Mo site due to these renormalized interaction strengths.
The development of high efficiency perovskite solar cells has sparked a multitude of measurements on the optical properties of these materials. For the most studied methylammonium(MA)PbI3 perovskite, a large range (6–55 meV) of exciton binding energies has been reported by various experiments. The existence of excitons at room temperature is unclear. For the MAPbX3 perovskites we report on relativistic Bethe-Salpeter Equation calculations (GW-BSE). This method is capable to directly calculate excitonic properties from first-principles. At low temperatures it predicts exciton binding energies in agreement with the reported ‘large’ values. For MAPbI3, phonon modes present in this frequency range have a negligible contribution to the ionic screening. By calculating the polarization in time from finite temperature molecular dynamics, we show that at room temperature this does not change. We therefore exclude ionic screening as an explanation for the experimentally observed reduction of the exciton binding energy at room temperature and argue in favor of the formation of polarons.
In the present work, we report the synthesis of high quality ZnO nanocrystals with sharp absorption edges in four different sizes, namely 3.0, 3.5, 4.7 and 5.4 nm, characterized by X-ray and electron diffraction, as well as transmission electron microscopy. The bandgaps of these samples, in conjunction with further data from the published literature, exhibit a systematic dependence on the nanocrystal size. In absence of any prior reliable theoretical results in the literature to understand this dependence quantitatively, we have analyzed for the first time, the electronic structure of bulk ZnO obtained from the full potential linearized augmented plane wave method using fatbands, density of states and partial density of states. The crystal orbital Hamiltonian population is obtained from linearized Muffin-Tin orbital band structure calculations to understand the range of hopping interactions relevant for an accurate description of the electronic structure. Using these analyses, a realistic tight binding model is proposed. Based on this model, we calculate the variation of the bandgap with the size of ZnO nanocrystals. These theoretical results agree well with all available data over the entire range of sizes, establishing the effectiveness of this approach.
We report the synthesis of three sizes of thioglycerol-capped precipitated ZnS nanocrystallites with relatively narrow size distributions, having average sizes of 1.8, 2.5, and 3.5
nm, respectively. These crystallites were extracted as free-standing powders which remain
stable under normal atmospheric conditions and can be redispersed in suitable solvents.
The nanocrystallite powders were characterized using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), energy
dispersive analysis of X-rays (EDAX), and UV−vis optical absorption. The synthesized
nanocrystallites show typical lattice spacings corresponding to the cubic phase of ZnS, as
confirmed from HRTEM, ED, and XRD. The lattice-resolved structures within a single
nanocrystallite show characteristic defects such as twinning and dislocations. We present a
comparative analysis of the size of nanocrystallites obtained from X-ray diffraction and TEM.
The position of the excitonic transitions as seen in the optical absorption spectrum of the
nanocrystallites was compared with the predictions of various models that correlate the
size versus band gap of these nanocrystallites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.