Automated analysis and annotation of video sequences are important for digital video libraries, content-based video browsing and data mining projects. A successful video annotation system should provide users with useful video content summary in a reasonable processing time. Given the wide variety of video genres available today, automatically extracting meaningful video content for annotation still remains hard by using current available techniques. However, a wide range video has inherent structure such that some prior knowledge about the video content can be exploited to improve our understanding of the high-level video semantic content. In this paper, we develop tools and techniques for analyzing structured video by using the low-level information available directly from MPEG compressed video. Being able to work directly in the video compressed domain can greatly reduce the processing time and enhance storage efficiency. As a testbed, we have developed a basketball annotation system which combines the low-level information extracted from MPEG stream with the prior knowledge of basketball video structure to provide high level content analysis, annotation and browsing for events such as wide-angle and close-up views, fast breaks, steals, potential shots, number of possessions and possession times. We expect our approach can also be extended to structured video in other domains.Keywords: structured video analysis, basketball video content annotation, browsing, indexing, MPEG compressed data, wide-angle and close-up camera views, intra-coded block count.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.