We report the growth of ultrathin single-crystal ZnO nanobelts by using a Ag-catalyzed vapor transport method. Extensive transmission electron microscopy and atomic force microscopy measurements reveal that the thickness of the ultrathin ZnO nanobelts is approximately 2 nm. Scanning electron microscopy and post-growth annealing studies suggest a '1D branching and 2D filling' growth process. Our results demonstrate the critical role of catalyst in the deterministic synthesis of nanomaterials with the desired morphology. In addition, these ultrafine nanobelts exhibit stable field emission with unprecedented high emission current density of 40.17 mA cm(-2). These bottom-up building blocks of ultrathin ZnO nanobelts may facilitate the construction of advanced electronic and photonic nanodevices.
1. The relationship of polymorphisms in the Melanocortin 1 Receptor (MC1R) and Agouti Signalling Protein (ASIP) genes with plumage colour in Japanese quail was investigated by cloning and sequencing the entire coding regions from black, white and maroon Japanese quail embryos at 12 d of incubation. 2. Three SNPs were identified in the MC1R coding region by multiple alignment of sequences from individuals with different plumage colours. A missense C/T mutation located at 169 bp within the Open Reading Frame caused a Ile57Val mutation in the amino acid sequence, and had a significant relationship with the black colour. 3. The expression of MC1R was higher in black plumage quails than that in maroon plumage quails, whereas the expression of ASIP was higher in maroon plumage quails than that in black plumage quails. 4. It is concluded that the black plumage colour in Japanese quails may be caused by either increased production of MC1R or decreased production of ASIP.
For the sake of enhance the sinter ability and electrical conductivity of BaZr0.1Ce0.7Y0.2O3‐δ (BZCY) electrolytes, a modified aqueous gel‐casting method was applied to synthesize high sintering active and high conductive BZCY nano‐powders. The new approach makes it easy to obtain pure perovskite. The highly sintering active purity‐phase of BZCY nano‐powder (particle size of 50∼100 nm) was obtained by calcining at 1100°C for 2 h. Nano‐powders effectively reduce the sintering densification temperature and successfully prepare BZCY electrolyte with relative density > 96 % at 1450°C, and promote grain growth with an average grain size of 2.36 μm. Benefiting from this, improved electrical conductivities (e.g., 12.4×10−3 S cm−1 at 700°C, in wet air) are obtained. The NiO‐BZCY/BZCY/LSCF‐BZCY anode‐supporting single cell shows a peak power density of 0.75 W cm−2 at 700°C while taking ambient air as oxidants and wet H2 (∼3 vol.% H2O) as fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.