In order to obtain the characteristics of magnetic core under ≈ 0.5-5 µs saturation time, a one-stage magnetic pulse compression circuit without external demagnetization circuits which are commonly used in magnetic compressors is designed. The current through the core is calculated by voltage across the resistive load, and the loop voltage is picked up with a single wire loop and integrated by software. B-H curves are derived from the measured voltage and current wave forms. B-H curves show that the core loss is in inverse proportion to the time to saturation, whereas the percentile core loss decreases as the charging energy increases. While the eddy current loss and dissipated energy are in direct proportion to dB/dt. The low inductance of magnetic switch indicates that the core is saturated and behaves as an air core. By applying custom characteristics to each stage in Pspice simulation, more practical energy transfer in magnetic pulse compression and the effects of leakage current are presented.
With the aim of studying the characteristics of laser-triggered surface flashover in voltage pulse, synchronization problem of laser pulse and voltage pulse should be solved. A single/double harmonic, with wavelength λ of 1064/532 nm, Q-switched Nd:YAG laser is used to trigger the surface flashover. The synchronization problem is solved using a self-made digital delay/pulse generator. The delay time and jitter of Marx's trigger input and output, Marx's trigger output and Marx's output, laser input and output are respectively measured. Based on the result of the delay time and the timing sequence of the laser triggering system, the synchronization of laser pulse and voltage pulse is obtained through adjusting the channel delay time of digital delay/pulse generator. In addition, introductory experiment of laser-triggered surface flashover is carried out using the flat electrodes and columned insulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.