Pulmonary surfactant is a lipid-rich material that promotes alveolar stability by lowering the surface tension at the air-fluid interface in the peripheral air spaces. The turnover of surfactant phospholipids in the alveolar space is fast, and several lines of evidence suggest there is rapid formation and replenishment of the phospholipid surface film during normal respiration. Specific proteins may regulate these dynamic surface properties. The predominant surfactant protein is a well-characterized, lipid-associated glycoprotein, SP [28][29][30][31][32][33][34][35][36] Pulmonary surfactant is a lipid-rich material secreted as tightly packed lamellae into the extracellular alveolar fluid layer (1). Within the alveolar space, surfactant lipids are found in a number of different structural forms, including lamellar bodies, tubular myelin, and various vesicular structures (2). Although the lipid compositions of the surfactant structures are similar, the physical properties, particularly the ability ofthe lipoprotein complexes to form a surface film, are quite different (3). Specific proteins appear to influence the structure and surface activity of surfactant-lipid complexes (4-10).The predominant surfactant-associated protein is the glycoprotein SP 28-36 (28-36 kDa) characterized by a collagenlike NH2-terminal domain and variable N-linked glycosylation of the COOH-terminal region (11-13). SP 28-36 is water soluble but readily associates with phospholipids (PLs) (14). In the presence of calcium, SP 28-36 causes PL aggregation and increases the rate of adsorption of surfactant lipids to an air-fluid interface (6,8,14). A second group of very hydrophobic proteins has been identified in lamellar bodies isolated from lung homogenate and in surfactant isolated from the bronchoalveolar wash (4, 9, 10, 15-17). Very little is known about the homogeneity, structure, or function ofthis group of hydrophobic proteins, but it has been reported that at least one of these proteins enhances PL surface film formation (9,10,18 (20). The surfactant in water (-16 mg of PL per ml, 2 mg of protein per ml) was extracted in 1-butanol (1:50, vol/vol) at room temperature (21). The surfactant/butanol mixture was spun twice at 10,000 X gav for 20 min to sediment the butanolinsoluble protein (94% of the total). The butanol supernatant was dried by rotary evaporation and the residue was resuspended in chloroform/methanol/0.1 M HCl, 1:1:0.5, vol/vol). A small amount of insoluble material was removed by centrifugation and the supernatant, containing 30 mg ofPL in 1 ml, was applied to a 1 cm x 45 cm column of Sephadex and eluted at 4 ml/hr with the same solvent at 40C. The eluted fractions, 0.5 ml, were assayed for protein (22) in the presence of 1% NaDodSO4, phosphorus (23) for the calculation of the PL content, and cholesterol (24). An aliquot of each fraction containing protein was analyzed by NaDodSO4/PAGE (25) and silver staining (26). 66The publication costs of this article were defrayed in part by page charge payment. This article...
The use of cDNA microarrays has made it possible to simultaneously analyze gene expression for thousands of genes. Microarray technology was used to evaluate the expression of >4000 genes in a rat model of myocardial infarction. More than 200 genes were identified that showed differential expression in response to myocardial infarction. Gene expression changes were monitored from 2 to 16 weeks after infarction in 2 regions of the heart, the left ventricle free wall and interventricular septum. A novel clustering program was used to identify patterns of expression within this large set of data. Unique patterns were revealed within the transcriptional responses that illuminate changes in biological processes associated with myocardial infarction.
Pulmonary surfactant is a phospholipid-protein complex which serves to lower the surface tension at the air-liquid interface in the alveoli of the mammalian lung and is essential for normal respiration. Inadequate levels of surfactant at birth, a frequent situation in premature infants, results in respiratory failure. In all species examined, surfactant is composed primarily of dipalmitoylphosphatidylcholine and two major protein species of relative molecular mass (Mr) 32,000 (32K) and 10K (refs 2-5). Reconstitution in vitro of purified 32K pulmonary surfactant apoprotein (PSAP) with synthetic lipids forms a lipoprotein complex that lowers surface tension by spreading to create a thin interfacial film. Here we describe the cloning of the human PSAP gene and complementary DNA, and discuss features of the unusual encoded protein.
Abstract-The natriuretic peptides, including human B-type natriuretic peptide (BNP), have been implicated in the regulation of cardiac remodeling. Because transforming growth factor- (TGF-) is associated with profibrotic processes in heart failure, we tested whether BNP could inhibit TGF--induced effects on primary human cardiac fibroblasts. BNP inhibited TGF--induced cell proliferation as well as the production of collagen 1 and fibronectin proteins as measured by Western blot analysis. cDNA microarray analysis was performed on RNA from cardiac fibroblasts incubated in the presence or absence of TGF- and BNP for 24 and 48 hours. TGF-, but not BNP, treatment resulted in a significant change in the RNA profile. BNP treatment resulted in a remarkable reduction in TGF- effects; 88% and 85% of all TGF--regulated mRNAs were affected at 24 and 48 hours, respectively. BNP opposed TGF--regulated genes related to fibrosis (collagen 1, fibronectin, CTGF, PAI-1, and TIMP3), myofibroblast conversion (␣-smooth muscle actin 2 and nonmuscle myosin heavy chain), proliferation (PDGFA, IGF1, FGF18, and IGFBP10), and inflammation (COX2, IL6, TNF␣-induced protein 6, and TNF superfamily, member 4). Lastly, BNP stimulated the extracellular signal-related kinase pathway via cyclic guanosine monophosphate-dependent protein kinase signaling, and two mitogen-activated protein kinase kinase inhibitors, U0126 and PD98059, reversed BNP inhibition of TGF--induced collagen-1 expression. These findings demonstrate that BNP has a direct effect on cardiac fibroblasts to inhibit fibrotic responses via extracellular signal-related kinase signaling, suggesting that BNP functions as an antifibrotic factor in the heart to prevent cardiac remodeling in pathological conditions. Key Words: B-type natriuretic peptide Ⅲ transforming growth factor- Ⅲ cardiac fibroblasts Ⅲ fibrosis N atriuretic peptides comprise a family of vasoactive hormones that play important roles in the regulation of cardiovascular and renal homeostasis. [1][2][3] Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are predominantly produced in the heart and exert vasorelaxant, natriuretic, and antigrowth activities. Binding of ANP and BNP to type-A natriuretic peptide receptor (NPRA) leads to the generation of cyclic guanosine monophosphate (cGMP), which mediates most biological effects of the peptides. Mice lacking NPRA exhibit cardiac hypertrophy, fibrosis, hypertension, and increased expression of fibrotic genes, including TGF1, TGF3, and collagen 1. 4 -6 Furthermore, targeted disruption of the BNP gene in mice results in cardiac fibrosis and enhanced fibrotic response to ventricular pressure overload, suggesting that BNP is involved in cardiac remodeling. 7 Cardiac remodeling is viewed as a key determinant of the clinical outcome in heart disease. It is characterized by a structural rearrangement of the cardiac chamber wall that involves cardiomyocyte hypertrophy, fibroblast proliferation, and increased deposition of extracellular matrix (ECM) pro...
Adipsin is a serine protease that is secreted by adipocytes into the bloodstream; it is deficient in several animal models of obesity, representing a striking example of defective gene expression in this disorder. Recombinant mouse adipsin was purified and its biochemical and enzymatic properties were studied in order to elucidate the function of this protein. Activated adipsin has little or no proteolytic activity toward most substrates but has the same activity as human complement factor D, cleaving complement factor B when it is complexed with activated complement component C3. Like authentic factor D, adipsin can activate the alternative pathway of complement, resulting in red blood cell lysis. Decreased (58 to 80 percent) complement factor D activity, relative to lean controls, was observed as a common feature of several experimental models of obesity, including the ob/ob, db/db, and monosodium glutamate (MSG)-injected mouse and the fa/fa rat. These results suggest that adipsin and the alternative pathway of complement may play an unexpected but important role in the regulation of systemic energy balance in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.