A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a Lagrangian framework, while accounting for bubble-bubble and bubble-wall interactions via an encounter model. The mass transfer rate is calculated for each individual bubble using a surface renewal model accounting for the instantaneous and local properties of the liquid phase in its vicinity. The distributions in space of chemical species residing in the liquid phase are computed from the coupled species balances considering the mass transfer from bubbles and reactions between the species. The model has been applied to simulate chemisorption of CO 2 bubbles in NaOH solutions. Our results show that apart from hydrodynamics behavior, the model is able to predict the bubble size distribution as well as temporal and spatial variations of each chemical species involved.
A model is presented which allows a priori computation of mass transfer coefficients for bubbles (droplets) rising in quiescent Newtonian fluids. The proposed model is based on the front tracking technique and explicitly accounts for the bubble-liquid mass transfer process. The dissolved species concentration in the liquid phase is computed from a species conservation equation while the value of the concentration at the interface is imposed via an immersed boundary technique. Simulations are carried out to demonstrate the capabilities of the model to predict bubble shape, flow field as well as transport of a species from the bubble to the liquid phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.