The analysis of 2D scattering maps generated in scatterometry experiments for detection and classification of nanoparticles on surfaces is a cumbersome and slow process. Recently, deep learning techniques have been adopted to avoid manual feature extraction and classification in many research and application areas, including optics. In the present work, we collected experimental datasets of nanoparticles deposited on wafers for four different classes of polystyrene particles (with diameters of 40, 50, 60, and 80 nm) plus a background (no particles) class. We trained a convolutional neural network, including its architecture optimization, and achieved 95% accurate results. We compared the performance of this network to an existing method based on line-by-line search and thresholding, demonstrating up to a twofold enhanced performance in particle classification. The network is extended by a supervisor layer that can reject up to 80% of the fooling images at the cost of rejecting only 10% of original data. The developed Python and PyTorch codes, as well as dataset, are available online.
The analysis of 2D scattering maps generated in scatterometry experiments for detection and classification of nanoparticle on surfaces is a cumbersome and slow process. Recently, deep learning techniques have been adopted to avoid manual feature extraction and classification in many research and application areas, including optics. In the present work, we collected experimental dataset of nanoparticles deposited on wafers for four different classes of polystyrene particles (with diameters of 40, 50, 60, 80 nm) plus background (no particles) class. We trained a convolutional neural network, including its architecture optimization, and achieved 95% accurate results. We compared the performance of this network to a existing method based on line-by-line search and thresholding, demonstrating up to a twofold enhanced performance in particle classification. The network is extended by a supervisor layer that can reject up to 80% of the fooling images at the cost of only rejecting 10% of original data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.