The geometrical relationship between a hemisphere and a cylinder has been investigated for controlled-release systems. The relationship was tested by comparing dissolution results with results from mathematical calculation based on the principles of diffusion for matrix systems. A procedure has been developed for producing implantable, cylindrical, low-density polyethylene matrices, uncoated or coated with a thin impermeable film and a thick paraffin layer except for a hole on the flat faces of the cylinder. Drug matrices were prepared from a blend of sodium salicylate and polymer compressed in an appropriately designed stainless-steel mould at 150 degrees C. Differential scanning calorimetry revealed that no decomposition product was formed in the matrix. When the surface area and the number of holes is increased, drug release also increases. When density is increased, however, drug release decreases significantly. Zero-order drug release was obtained from high-density covered one-hole and two-hole matrices. The diffusion coefficient was calculated as 0.067 day-1. The study suggested that true zero-order drug release could be obtained by drug diffusion from a hole, rather than from geometric shapes in the matrix systems. In addition, for constant release the diffusion area has to increase by approximately 25 mm2 every day, compared to the area of the previous day, because the diffusion distance increases logarithmically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.