Models of learning typically focus on synaptic plasticity. However, learning is the result of both synaptic and myelin plasticity. Specifically, synaptic changes often co-occur and interact with myelin changes, leading to complex dynamic interactions between these processes. Here, we investigate the implications of these interactions for the coupling behavior of a system of Kuramoto oscillators. To that end, we construct a fully connected, one-dimensional ring network of phase oscillators whose coupling strength (reflecting synaptic strength) as well as conduction velocity (reflecting myelination) are each regulated by a Hebbian learning rule. We evaluate the behavior of the system in terms of structural (pairwise connection strength and conduction velocity) and functional connectivity (local and global synchronization behavior).We find that for conditions in which a system limited to synaptic plasticity develops two distinct clusters both structurally and functionally, additional adaptive myelination allows for functional communication across these structural clusters. Hence, dynamic conduction velocity permits the functional integration of structurally segregated clusters. Our results confirm that network states following learning may be different when myelin plasticity is considered in addition to synaptic plasticity, pointing towards the relevance of integrating both factors in computational models of learning.Synaptic and myelin plasticity are two crucial mechanisms underlying learning in the brain.
Synaptic plasticity, which refers to activity-dependent changes of synaptic coupling, has been
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.