The flow between two finite rotating disks enclosed by a cylinder is investigated both numerically and experimentally. For this finite geometry the full stationary Navier–Stokes equations are solved numerically without similarity assumptions. Experimental results are obtained by means of stereophotography of small tracer particles. The results are in good agreement with the numerical solution. Owing to the presence of the cylinder sidewall, the solution is found to be unique for all values of the parameters considered. When the disks rotate in opposite senses with counter-rotation above 15%, a stagnation point appears at the slower-rotating disk. This stagnation point is associated with a two-cell structure in the meridional plane and is experimentally observed as a ring of particles at the slower-rotating disk. Near the axis of rotation the solution is found to satisfy similarity demands; for weak counter-rotation the solution is of Batchelor type near the axis of rotation, but for strong counter-rotation a Stewartson profile is found to be more adequate for the description of the tangential velocity near the axis.
SUMMARYIn this paper it is shown numerically that axially-symmetric solutions of the Navier-Stokes equations, which describe the rotating flow above a disk which is itself rotating, are non-unique. The numerical techniques designed to calculate such solutions with a high power of resolution are given. Especially the behaviour in and around the first branching point is considered. It is found that for s = -0.16054 two branches coincide. The second branch has been almost completely calculated. It ranges back to positive values ofs.
Over a large range of the axial coordinate a typical higher-branch solution of the rotating-disk equations consists of a chain of inviscid cells separated from each other by viscous interlayers. In this paper the leading-order relation between two adjacent cells will be established by matched asymptotic expansions for general values of the parameter appearing in the equations. It is found that the relation between the solutions in the two cells crucially depends on the behaviour of the tangential velocity in the viscous interlayer. The results of the theory are compared with accurate numerical solutions and good agreement is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.