Reaching and grasping in primates depend on the coordination of neural activity in large frontoparietal ensembles. Here we demonstrate that primates can learn to reach and grasp virtual objects by controlling a robot arm through a closed-loop brain–machine interface (BMIc) that uses multiple mathematical models to extract several motor parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple arm muscles) from the electrical activity of frontoparietal neuronal ensembles. As single neurons typically contribute to the encoding of several motor parameters, we observed that high BMIc accuracy required recording from large neuronal ensembles. Continuous BMIc operation by monkeys led to significant improvements in both model predictions and behavioral performance. Using visual feedback, monkeys succeeded in producing robot reach-and-grasp movements even when their arms did not move. Learning to operate the BMIc was paralleled by functional reorganization in multiple cortical areas, suggesting that the dynamic properties of the BMIc were incorporated into motor and sensory cortical representations.
A paradigm is described for recording the activity of single cortical neurons from awake, behaving macaque monkeys. Its unique features include high-density microwire arrays and multichannel instrumentation. Three adult rhesus monkeys received microwire array implants, totaling 96 -704 microwires per subject, in up to five cortical areas, sometimes bilaterally. Recordings 3-4 weeks after implantation yielded 421 single neurons with a mean peak-to-peak voltage of 115 ؎ 3 V and a signal-to-noise ratio of better than 5:1. As many as 247 cortical neurons were recorded in one session, and at least 58 neurons were isolated from one subject 18 months after implantation. This method should benefit neurophysiological investigation of learning, perception, and sensorimotor integration in primates and the development of neuroprosthetic devices.
Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic performance in nonstationary systems. Here, we explore the use of decoder adaptation to shape neuroplasticity in two scenarios relevant for real-world neuroprostheses: nonstationary recordings of neural activity and changes in control context. Nonhuman primates learned to control a cursor to perform a reaching task using semistationary neural activity in two contexts: with and without simultaneous arm movements. Decoder adaptation was used to improve initial performance and compensate for changes in neural recordings. We show that beneficial neuroplasticity can occur alongside decoder adaptation, yielding performance improvements, skill retention, and resistance to interference from native motor networks. These results highlight the utility of neuroplasticity for real-world neuroprostheses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.