Quantum tunnelling through a potential barrier (such as occurs in nuclear fusion) is very sensitive to the detailed structure of the system and its intrinsic degrees of freedom. A strong increase of the fusion probability has been observed for heavy deformed nuclei. In light exotic nuclei such as 6He, 11Li and 11Be (termed 'halo' nuclei), the neutron matter extends much further than the usual nuclear interaction scale. However, understanding the effect of the neutron halo on fusion has been controversial--it could induce a large enhancement of fusion, but alternatively the weak binding energy of the nuclei could inhibit the process. Other reaction channels known as direct processes (usually negligible for ordinary nuclei) are also important: for example, a fragment of the halo nucleus could transfer to the target nucleus through a diminished potential barrier. Here we study the reactions of the halo nucleus 6He with a 238U target, at energies near the fusion barrier. Most of these reactions lead to fission of the system, which we use as an experimental signature to identify the contribution of the fusion and transfer channels to the total cross-section. At energies below the fusion barrier, we find no evidence for a substantial enhancement of fusion. Rather, the (large) fission yield is due to a two-neutron transfer reaction, with other direct processes possibly also involved.
The frequency dependence of viscoelastic properties of a branched polymer sample near its gelation threshold has been studied in oscillatory measurements. The results are in agreement with De Gennes' analogy relating the critical behaviour of the elastic moduli G' and G to the electrical conductivity of percolation clusters. In particular the increase of both G' and G" with frequency (0.1 to 10Hz) can be described by power laws with a common exponent U = tis + t, and the loss angle 6 assumes near the gelation point the universal value = mI2 (t and s denote, respectively, the exponents of elastic modulus and viscosity a t zero frequency). The value of U determined in these experiments (U = 0.70 +. 0.02) is in very good agreement with percolation theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.