1 The intracarotid administration of alkylglycerols has been reported previously by us to be a novel strategy for increased delivery of various chemotherapeutic drugs to the normal brain and brain tumors in rats. 2 Effectiveness and structure -activity relations of the most promising pentyl-and hexylglycerol derivatives have been elucidated in vivo by analyzing the transfer of methotrexate (MTX) across the blood -brain barrier (BBB) in normal rats. The effects were compared with BBB disruption using hypertonic mannitol or intracarotid infusion of bradykinin. Furthermore, toxicity of the alkylglycerols has been studied in long-term experiments. 3 Apart from 1-O-pentyldiglycerol, all alkylglycerols induced a concentration-dependent increase in MTX delivery to the brain varying from 1.1 to more than 300-fold compared to intra-arterial MTX alone. Enhanced barrier permeability rapidly approached baseline values within 5 and 120 min at the latest. Chemical structure, concentration, time schedule of injections and combination of different alkylglycerols were identified as instruments suited to regulate the MTX accumulation within a wide range. Mannitol 1.4 m resulted in very high MTX levels in the brain as observed using the highest concentrations of alkylglycerols. Intracarotid infusion of bradykinin had only a minor effect on the BBB. Using 1-O-pentylglycerol or 2-O-hexyldiglycerol, both cell culture experiments and long-term in vivo analyses including clinical, laboratory and histopathological evaluations revealed no signs of toxicity. 4 In summary, intracarotid short-chain alkylglycerols constitute a very effective and low toxic strategy for transient opening of the BBB to overcome the limited access of cytotoxic drugs to the brain.
The aim of this study was to investigate the swelling properties and the biocompatibility of a novel tissue expander material. The self-inflating material is a hydrogel consisting of a modified copolymer of methylmethacrylate and N-vinyl-2-pyrrolidone, which takes up water by osmosis. To increase the swelling volume, the primarily neutral gel material was modified by converting it into an ionized gel. To study the swelling and pressure behavior of the material, the anhydrous gel cylinders were equilibrated in distilled water, saline, and sugar solutions. The biocompatibility was investigated in cell culture. We tested the hydrogel eluate after swelling for cytotoxicity and mutagenicity using the cell lines MRC-5 and P3X63 Ag8 653 (Ag8). Furthermore, particles of the material were added to cell cultures to induce foreign body reactions and to verify its influence on monocyte differentiation. The material has a swelling capacity (Q = maximum swelling volume/anhydrous volume) of 5 to 50 depending on the degree of ionization of the polymer network. In this study, two polymer modifications with a swelling equilibrium of Q = 11.1 and 30 in water were tested. The swelling ratio also depends on concentration and ion content of the equilibration medium. The highest swelling capacity was found in water, the lowest in Ringer's solution. The swelling of the anhydrous material with the swelling capacity of Q = 11.1 fits best the average purpose of material properties for tissue expansion and generates a maximal hydrostatic pressure of approximately 235 mmHg. Effects on cell proliferation were detected only at the highest eluate concentration tested (i.e., eluate: culture medium = 1:1), which was far beyond physiological values, whereas mutagenicity was absent. Monocytes neither migrated nor tightly attached to the hydrogel. They neither phagocytose the material nor did they show any sign of a foreign body reaction, e.g., formation of multinucleated giant cells or monocyte proliferation. In the presence of hydrogel material, the differentiation processes of monocytes to macrophages or dendritic cells, respectively, were found to be undisturbed. From these results, we conclude that there is a high biocompatibility of the expander material, which may be a favorable and interesting candidate for further clinical applications.
Knowledge of the basic mechanisms controlling osteogenesis and adipogenesis might provide new insights into the prevention of osteoporosis and age-related osteopenia. With the help of magnetic cell sorting and fluorescence activated cell sorting (FACS), osteoblastic subpopulations of mesenchymal progenitor cells were characterized. Alkaline phosphatase (AP) negative cells expressed low levels of osteoblastic and adipocytic markers. AP positive cells expressed adipocytic markers more strongly than the AP negative cell populations, thus suggesting that committed osteoblasts exhibit a greater adipogenic potential. AP negative cells differentiated to the mature osteoblastic phenotype, as demonstrated by increased AP-activity and osteocalcin secretion under standard osteogenic culture conditions. Surprisingly, this was accompanied by increased expression of adipocytic gene markers such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase and fatty acid binding protein. The induction of adipogenic markers was suppressed by transforming growth factor-b1 (TGF-b1) and promoted by bone morphogenetic protein 2 (BMP-2). Osteogenic culture conditions including BMP-2 induced both the formation of mineralized nodules and cytoplasmic lipid vacuoles. Upon immunogold electron microscopic analysis, osteoblastic and adipogenic marker proteins were detectable in the same cell. Our results suggest that osteogenic and adipogenic differentiation in human mesenchymal progenitor cells might not be exclusively reciprocal, but rather, a parallel event until late during osteoblast development.
Erucylphosphocholine (ErPC) is a promising anti-neoplastic drug for the treatment of malignant brain tumours. It exerts strong anti-cancer activity in vivo and in vitro and induces apoptosis even in chemoresistant glioma cell lines. The purpose of this study was to expand on our previous observations on the potential mechanisms of ErPC-mediated apoptosis with a focus on death receptor activation and the caspase network. A172 and T98G glioma cells were treated with ErPC for up to 48 h. ErPC effects on the expression of the tumour necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL) receptor system, and on caspase activation were determined. ErPC had no effect on the expression of TNFa or TRAIL. Inhibition of the TNF or TRAIL signalling pathway with antagonistic antibodies or fusion proteins did not affect apoptosis induced by ErPC, and a dominant-negative FADD construct did not abolish ErPC-induced effects. Western blot analysis indicated that ErPC-triggered apoptosis resulted in a time-dependent processing of caspases-3, -7, -8 and -9 into their respective active subunits. Co-treatment of A172 cells with different caspase inhibitors prevented apoptosis but did not abrogate cell death. These data suggest that A172 cells might have an additional caspase-independent pathway that insures cell death and guarantees killing of those tumour cells whose caspase pathway is incomplete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.