In order to overcome the relatively long delay in processing visual feedback information when pursuing a moving visual target, it is necessary to predict the future trajectory of the target if it is to be tracked with accuracy. Predictive behaviour can be achieved through internal models, and the cerebellum has been implicated as a site for their operation. Purkinje cells in the lateral cerebellum (D zones) respond to visual inputs during visually guided tracking and it has been proposed that their neural activity reflects the operation of an internal model of target motion. Here we provide direct evidence for the existence of such a model in the cerebellum by demonstrating an internal model of a moving external target. Single unit recordings of Purkinje cells in lateral cerebellum (D2 zone) were made in cats trained to perform a predictable visually guided reaching task. For all Purkinje cells that showed tonic simple spike activity during target movement, this tonic activity was maintained during the transient disappearance of the target. Since simple spike activity could not be correlated to eye or limb movements, and the target was familiar and moved in a predictable fashion, we conclude that the Purkinje cell activity reflects the operation of an internal model based on memory of its previous motion. Such a model of the target's motion, reflected in the maintained modulation during the target's absence, could be used in a predictive capacity in the interception of a moving object.
Complex spike synchrony is thought to be a key feature of how inferior olive climbing fibre afferents make their vital contribution to cerebellar function. However, little is known about whether the other major cerebellar input, the mossy fibres (which generate simple spikes within Purkinje cells, PCs), exhibit a similar synchrony in impulse timing. We have used a multi-microelectrode system to record simultaneously from two or more PCs in the posterior lobe of the ketamine/xylazine-anaesthetized rat to examine the relationship between complex spike and simple spike synchrony in PC pairs located mainly in the A2 and C1 zones in crus II and the paramedian lobule. PC pairs displaying correlations in the occurrence of their complex spikes (coupled PCs) were usually located in the same zone and were also more likely to exhibit correlations in the timing of their spontaneous simple spikes and associated pauses in activity. In coupled PCs, synchrony in both complex spike and simple spike activity was enhanced and the relative timing in the occurrence of complex spikes could be altered by peripheral stimulation. We conclude that the functional coupling between PC pairs in their complex spike and simple spike activity can be significantly modified by sensory inputs, and that mechanisms besides electrotonic coupling are involved in generating PC synchrony. Synchronous activity in multiple PCs converging onto the same cerebellar nuclear cells is likely to have a significant impact on cerebellar output that could form important timing signals to orchestrate coordinated movements.
Visually guided locomotion was studied in an experiment in which human subjects (N = 8) had to accurately negotiate a series of irregularly spaced stepping-stones while infrared reflectometry and electrooculography were used to continuously record their eye movements. On average, 68% of saccades made toward the next target of footfall had been completed (visual target capture had occurred) while the foot to be positioned was still on the ground; the remainder were completed in the first 300 ms of the swing phase. The subjects' gaze remained fixed on a target, on average, until 51 ms after making contact with it, with little variation. A greater amount of variation was seen in the timing of trailing footlift relative to visual target capture. Assuming that subjects sampled the visual cues as and when they were required, visual information appeared most useful when the foot to be positioned was still on the ground.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.