Aircraft and satellite observations indicate the presence of ppt (ppt ≡ pmol/mol) levels of BrO in the free troposphere with important implications for the tropospheric budgets of ozone, OH, and mercury. We can reproduce these observations with the GEOS-Chem global tropospheric chemistry model by including a broader consideration of multiphase halogen (Br-Cl) chemistry than has been done in the past. Important reactions for regenerating BrO from its nonradical reservoirs include HOBr + Br − /Cl − in both aerosols and clouds, and oxidation of Br − by ClNO 3 and ozone. Most tropospheric BrO in the model is in the free troposphere, consistent with observations and originates mainly from the photolysis and oxidation of ocean-emitted CHBr 3 . Stratospheric input is also important in the upper troposphere. Including production of gas phase inorganic bromine from debromination of acidified sea salt aerosol increases free tropospheric Br y by about 30%. We find HOBr to be the dominant gas-phase reservoir of inorganic bromine. Halogen (Br-Cl) radical chemistry as implemented here in GEOS-Chem drives 14% and 11% decreases in the global burdens of tropospheric ozone and OH, respectively, a 16% increase in the atmospheric lifetime of methane, and an atmospheric lifetime of 6 months for elemental mercury. The dominant mechanism for the Br-Cl driven tropospheric ozone decrease is oxidation of NO x by formation and hydrolysis of BrNO 3 and ClNO 3 .
Abstract. An airfreight container with automated
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an ''environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O 3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O 3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O 3 concentrations will reach 100 parts per billion (10 9 ) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided. air quality ͉ land use change ͉ sustainable development ͉ biofuel G round-level ozone (O 3 ) is a priority air pollutant that damages human health, plants, and materials, reduces crop productivity, and has direct and indirect effects on the Earth's climate system (1). It is formed in the atmosphere by reactions involving oxides of nitrogen (NO x ) and volatile organic compounds (VOCs) in the presence of sunlight. The terrestrial biosphere is a major source of both these families of trace gases; in fact, the great majority of reactive VOCs globally are of biogenic origin (2). Here we show, using integrated and fully comprehensive measurements of biosphere-to-atmosphere trace gas fluxes and atmospheric composition, together with atmospheric chemistry modeling, that conversion of tropical rainforest to oil palm plantations results in much greater emissions of these reactive trace gases that lead to O 3 formation. Increased NO x emissions will cause severe ground-level O 3 pollution (Ͼ 100 ppbv), but this pollution could be prevented by strict control of emissions of reactive nitrogen species to the atmosphere. Our study shows the importance of quantifying the current and future effects of land use change on air quality when assessing the ''environmental friendliness'' of palm oil and other biofuel crops. Of course, air quality is only a single consideration; in assessing the consequences of biofuel production, effects o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.