Abstract-The problem of detection and classification of buried dielectric anomalies using a separated aperture microwave sensor and an artificial neural network discriminator was considered. Several methods for training and data representation were developed to study the trainability and generalization capabilities of the networks. The effect of the architectural variation on the network performance was also studied. The principal component method was used to reduce the volume of the data and also the dimension of the weight space. Simulation results on two types of targets were obtained which indicated superior detection and classification performance when compared with the conventional methods.
Abstract-The problem of detection and classification of buried dielectric anomalies using a separated aperture microwave sensor and an artificial neural network discriminator was considered. Several methods for training and data representation were developed to study the trainability and generalization capabilities of the networks. The effect of the architectural variation on the network performance was also studied. The principal component method was used to reduce the volume of the data and also the dimension of the weight space. Simulation results on two types of targets were obtained which indicated superior detection and classification performance when compared with the conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.