Successful fracture healing typically involves the production of a cartilaginous callus, which is eventually remodelled into new bone. The blood vessels in the advancing front of endochondral ossification are likely to play an important role in the replacement of cartilage with bone within the callus. This was investigated by histology and immunohistochemistry techniques carried out on rabbit tibia1 osteotomy tissue. Cavities within the cartilage were identified by histology and in many cases, there appeared to be vascular structures within them, identified by the immunolocalisation of the transmembrane proteins CD31 and CD34. Osteocalcin localisation and Alizarin red histology was carried out to identify 'osteoblastic' cells and mineral localisation within the cartilaginous callus respectively.However, it was the identification of a population of cells lining the cavities within the cartilage that became the main focus of this study. These cells were 'osteoblastic' in nature, (positive localisation of osteocalcin), and were also positive for the adhesion proteins CD31 and CD34. It is thought that these cells play a role in the conversion of cartilage to bone during the fracture healing process.
Following fracture, the cartilaginous tissue of the soft callus is eventually replaced by bone. Removal of the cartilage is a critical part of the bone healing process but information concerning the changes in chondrocytes during this process is sparse. The aim of the study was to investigate the fate of chondrocytes in the soft callus during the bone repair process using a rabbit tibia1 fracture model. Fracture tissue was processed for collagen 1-11 I and keratan sulphate immunohistochemistry to study changes in matrix composition and the TUNEL technique (terminal deoxynucleotidyl transferase medicated dUTP nick-end labelling) to identify death of soft callus chondrocytes. Transmission electron microscopy (TEM) was also carried out to investigate the ultrastructure of chondrocytes within the soft callus. Results showed that the size of the cartilage area decreased over time and that cartilage matrix was replaced with new matrix rich in collagen 1 and 111. Chondrocytes became engulfed in the new matrix and appeared to stop producing cartilage matrix. Chondrocyte cell death was seen at the border of the soft callus, just within the newly produced matrix. TEM revealed that these dying/dead cells were not typically apoptotic in appearance. In conclusion, results indicate that chondrocytes of the soft callus die as a result of the progressive production of bone matrix which eventually engulfs them and leads to the remodelling of the area and eventual bone repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.