In this manuscript, the structural, electronic, and thermoelectric properties of Na doped binary LaS have been studied by means of the full-potential augmented plane wave plus local orbital's method. The Wu-Cohen generalized gradient and the Tran-Blaha modified Becke-Johnson (TB-mBJ) approximations have been employed to describe the exchange-correlation potential. Examining the composition effect on the electronic properties, we point out that LaS compound and Na0.25La0.75S alloy have a metallic behavior. On the other hand, both Na0.5La0.5S and Na0.75La0.25S alloys show a semiconductor behavior with direct bandgap equal to 1.26 and 2.8 eV, using the TB-mBJ approximation, respectively. Moreover, the thermoelectric properties of LaS are enhanced, especially for 50% and 75% of Na concentration. Consequently, the estimated ZT value of about 0.75 at room temperature proves that Na doped metal LaS makes it a promising candidate for thermoelectric applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.