The concentrations of 17 elements in the nail and hair of 117 subjects from a nonindustrialized environment were determined by instrumental neutron activation analysis (INAA). A new method of statistical treatment that allows for more meaningful use of detection limit values was used to process the concentration data. Geometric means and standard errors are presented for each element, along with a summary of the effects of age, sex, and treatment on the concentration of each element. For nails, these data represent the first comprehensive study for several important elements. Correlations for each element between hair and nail were determined. With few exceptions, concentrations of nonessential trace elements were positively correlated in hair and nail, whereas concentrations of essential elements showed no correlations. The factors affecting concentrations and control levels must be considered in studying alterations in disease states.
A new targeting chemotherapeutic agent, Pt-Mal-LHRH, was synthesized by linking activated cisplatin to luteinizing hormone releasing hormone (LHRH). The compound's efficacy and selectivity toward 4T1 breast cancer cells were evaluated. Carboplatin was selected as the comparative platinum complex, since the Pt-Mal-LHRH malonate linker chelates platinum in a similar manner to carboplatin. Breast cancer and normal cell viability were analyzed by an MTT assay comparing Pt-Mal-LHRH with carboplatin. Cells were also treated with either Pt-Mal-LHRH or carboplatin to evaluate platinum uptake by ICP-MS and cell migration using an in vitro scratch-migration assay. Tumor volume and metastasis were evaluated using an in vivo 4T1 mouse tumor model. Mice were administered Pt-Mal-LHRH (carboplatin molar equivalent dosage) through ip injection and compared to those treated with carboplatin (5 (mg/kg)/week), no treatment, and LHRH plus carboplatin (unbound) controls. An MTT assay showed a reduction in cell viability (p < 0.01) in 4T1 and MDA-MB-231 breast cancer cells treated with Pt-Mal-LHRH compared to carboplatin. Pt-Mal-LHRH was confirmed to be cytotoxic by flow cytometry using a propidium iodide stain. Pt-Mal-LHRH displayed a 20-fold increase in 4T1 cellular uptake compared to carboplatin. There was a decrease (p < 0.0001) in 4T1 cell viability compared to 3T3 normal fibroblast cells. Treatment with Pt-Mal-LHRH also resulted in a significant decrease in cell-migration compared to carboplatin. In vivo testing found a significant reduction in tumor volume (p < 0.05) and metastatic tumor colonization in the lungs with Pt-Mal-LHRH compared to carboplatin. There was a slight decrease in lung weight and no difference in liver weight between treatment groups. Together, our data indicate that Pt-Mal-LHRH is a more potent and selective chemotherapeutic agent than untargeted carboplatin.
The determination of neptunium-237 (237Np) traditionally has been performed by alpha spectrometry or neutron activation analysis. These methods are labor intensive and require several days for completion. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a possible alternative for 237Np determinations. This paper describes the analytical method developed for samples that have significant levels of uranium present. The lower reporting limits achievable by ICP-MS are competitive with the counting methods, but the real advantage for this laboratory lies in the lower cost and faster turnaround time provided by ICP-MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.