[1] The Poincaré index indicates that the Cluster spacecraft tetrahedron entraps a number of 3-D magnetic nulls during an encounter with the turbulent magnetosheath. Previous researchers have found evidence for reconnection at one of the many filamentary current layers observed by Cluster in this region. We find that many of the entrained nulls are also associated with strong currents. We dissect the current structure of a pair of spiral nulls that may be topologically connected. At both nulls, we find a strong current along the spine, accompanied by a somewhat more modest current perpendicular to the spine that tilts the fan toward the axis of the spine. The current along the fan is comparable to the that along the spine. At least one of the nulls manifests a rotational flow pattern in the fan plane that is consistent with torsional spine reconnection as predicted by theory. These results emphasize the importance of examining the magnetic topology in interpreting the nature of currents and reconnection in 3-D turbulence.Citation: Wendel, D. E., and M. L. Adrian (2013), Current structure and nonideal behavior at magnetic null points in the turbulent magnetosheath,
[1] Magnetic reconnection is an efficient way to convert magnetic energy into particle energy. In this paper, we use Cluster thermal electron and ion measurements in the vicinity of a reconnection X line to delineate the structure of the reconnection current sheet. Multispacecraft observations made by Cluster on 18 August 2002 indicate that an X line drifted close to the spacecraft, about 3.4 R E earthward of the position where another X line had been observed earlier. Comparison of the Hall magnetic and electric field geometry and the observed properties of energetic electron beams streaming along the separatrix between the Cluster spacecraft indicates that the second X line formed within 20 s of the observation of the first X line. Repeated flow reversals and Hall field geometry together with the presence of a magnetic island embedded in the outflow region downstream of the first X line suggest that the initial current sheet was unstable, perhaps to the tearing mode. We identify a region with a thickness of 0.72 ion inertial lengths (29 electron inertial lengths, d e ) of super-Alfvénic electron outflow (greater than the ion in-flow Alfvén speed) during the period when the spacecraft was in the vicinity of the neutral sheet. Slightly below the neutral sheet, Cluster observed asymmetric counter-streaming electrons with a loss of axisymmetry in the electron (V ?1 , V ?2 ) distribution functions over a thin boundary with a thickness of several d e . This electron-scale transition layer was embedded in a much wider region where both the ion and electron Walén tests failed, and the electron super-Alfvénic bulk outflow jets with high-energy electron beams were detected. Those phenomena provide details of the substructure of the reconnection current sheet and suggest that the spacecraft traversed or skimmed the tailward edge of an elongated electron current layer. We also note that this event differs from a previously reported reconnection event in that strong electron temperature anisotropy (T k > T ? ) is observed both in the inflow region and in the exhaust, where the anisotropy appears to be associated with the elongated electron outflow jets.
The solar wind electron velocity distribution function (eVDF) exhibits a variety of non-thermal features that deviate from thermal equilibrium. These deviations from equilibrium provide a local source for electromagnetic fluctuation emissions, including the commonly observed electron whistler-cyclotron and firehose instabilities. We present a systematic analysis of Wind-SWE-VEIS observations of solar wind electron plasma and associated Wind-MFI observed magnetic fluctuations. For the first time using the full solar wind electron distribution and its moments, without separation of the various electron components, we show clear evidence that the temperature anisotropy threshold of the parallel electron cyclotron anisotropic instability bounds solar wind electrons during slow solar wind periods. We also demonstrate that during periods of slow solar wind, collisions—while infrequent—are the dominant mechanism by which solar wind electrons are constrained, leading to isotropization. During fast solar wind periods, magnetic fluctuations and solar wind anisotropies are enhanced above the parallel whistler anisotropic threshold boundary and collisional effects are significantly reduced. Preliminary calculations further show that the oblique electron whistler mirror anisotropic instability bounds both the slow and fast solar wind. Regardless of speed, the solar wind electron thermal anisotropy appears globally bounded by the parallel electron firehose instability for anisotropies . Our results indicate that collisions, while infrequent, play a necessary role in regulating the solar wind eVDFs. In striking contrast to solar wind ions, solar wind electron plasma, when considered globally as a single eVDF, is only marginally stable with respect to parallel propagating instabilities.
Plasmas are ubiquitous in nature, surround our local geospace environment, and permeate the universe. Plasma phenomena in space give rise to energetic particles, the aurora, solar flares and coronal mass ejections, as well as many energetic phenomena in interstellar space. Although plasmas can be studied in laboratory settings, it is often difficult, if not impossible, to replicate the conditions (density, temperature, magnetic and electric fields, etc.) of space. Single-point space missions too numerous to list have described many properties of near-Earth and heliospheric plasmas as measured both in situ and remotely (see http://www.nasa.gov/missions/#.U1mcVmeweRY for a list of NASA-related missions). However, a full description of our plasma environment requires three-dimensional spatial measurements. Cluster is the first, and until data begin flowing from the Magnetospheric Multiscale Mission (MMS), the only mission designed to describe the three-dimensional spatial structure of plasma phenomena in geospace. In this paper, we concentrate on some of the many plasma phenomena that have been studied using data from Cluster. To date, there have been more than 2000 refereed papers published using Cluster data but in this paper we will, of necessity, refer to only a small fraction of the published work. We have focused on a few basic plasma phenomena, but, for example, have not dealt with most of the vast body of work describing dynamical phenomena in Earth's magnetosphere, including the dynamics of current sheets in Earth's magnetotail and the morphology of the dayside high latitude cusp. Several review articles and special publications are available that describe aspects of that research in detail and interested readers are referred to them (see for example, Escoubet et al.
International audienceWe investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection in a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of simple topological features such as null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a good correspondence between the locus of changes in magnetic connectivity or the quasi-separatrix layer and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we investigate the distribution of the parallel electric field along the reconnecting field lines. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first-order trends in the parallel electric field while the contribution from fluctuations of the parallel electric field, such as electron holes, is negligible. The results impact the determination of reconnection sites and reconnection rates in models and in situ spacecraft observations of 3D turbulent reconnection. It is difficult through direct observation to isolate the loci of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the running sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.