The ability of alpha-adrenergic agonists and vasopressin to increase the mitochondrial volume in hepatocytes is dependent on the presence of extracellular Ca2+. Addition of Ca2+ to hormone-treated cells incubated in the absence of Ca2+ initiates mitochondrial swelling. In the presence of extracellular Ca2+, A23187 (7.5 microM) induces mitochondrial swelling and stimulates gluconeogenesis from L-lactate. Isolated liver mitochondria incubated in KCl medium in the presence of 2.5 mM-phosphate undergo energy-dependent swelling, which is associated with electrogenic K+ uptake and reaches an equilibrium when the volume has increased to about 1.3-1.5 microliter/mg of protein. This K+-dependent swelling is stimulated by the presence of 0.3-1.0 microM-Ca2+, leading to an increase in matrix volume at equilibrium that is dependent on [Ca2+]. Ca2+-activated K+-dependent swelling requires phosphate and shows a strong preference for K+ over Na+, Li+ or choline. It is not associated with either uncoupling of mitochondria or any non-specific permeability changes and cannot be produced by Ba2+, Mn2+ or Sr2+. Ca2+-activated K+-dependent swelling is not prevented by any known inhibitors of plasma-membrane ion-transport systems, nor by inhibitors of mitochondrial phospholipase A2. Swelling is inhibited by 65% and 35% by 1 mM-ATP and 100 microM-quinine respectively. The effect of Ca2+ is blocked by Ruthenium Red (5 micrograms/ml) at low [Ca2+]. Spermine (0.25 mM) enhanced the swelling seen on addition of Ca2+, correlating with its ability to increase Ca2+ uptake into the mitochondria as measured by using Arsenazo-III. Mitochondria derived from rats treated with glucagon showed less swelling than did control mitochondria. In the presence of Ruthenium Red and higher [Ca2+], the mitochondria from hormone-treated animals showed greater swelling than did control mitochondria. These data imply that an increase in intramitochondrial [Ca2+] can increase the electrogenic flux of K+ into mitochondria by an unknown mechanism and thereby cause swelling. It is proposed that this is the mechanism by which alpha-agonists and vasopressin cause an increase in mitochondrial volume in situ.
Rat hepatocytes whose phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) had been labelled for 60 min with 32P were treated with glucagon for 10 min or phenylephrine for 2 min. Glucagon caused a 20% increase in PIP but no change in PIP2 whereas phenylephrine caused a similar increase in PIP but a 15% decrease in PIP2. Addition of both hormones together for 10 min produced a 40% increase in PIP. A crude liver mitochondrial fraction incubated with [32P]Pi and ADP incorporated label into PIP, PIP2 and phosphatidic acid. The PIP2 was shown to be in contaminating plasma membranes and PIP in both lysosomal and plasma-membrane contamination. A minor but definitely mitochondrial phospholipid, more polar than PIP2, was shown to be labelled with 32P both in vitro and in hepatocytes. The rate of 32P incorporation into PIP was faster in mitochondrial/plasma-membrane preparations from rats treated with glucagon or if 3 microM-Ca2+ and Ruthenium Red were present in the incubation buffer. Loss of 32P from membranes labelled in vitro was shown to be accompanied by formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate, and was faster in preparations from glucagon-treated rats or in the presence of 3 microM-Ca2+. It is concluded that glucagon stimulates both PIP2 phosphodiesterase and phosphatidylinositol kinase activities, as does the presence of 3 microM-Ca2+. The resulting formation of IP3 may be responsible for the observed release of intracellular Ca2+ stores. The roles of a guanine nucleotide regulatory protein and phosphorylation in mediating these effects are discussed.
Liver mitochondria isolated from glucagon-treated rats by using both mannitol- and sucrose-based media showed enhanced uncoupled succinate oxidation, pyruvate metabolism and citrulline synthesis. Mitochondria prepared in mannitol medium showed some stimulation of these parameters compared with those prepared in sucrose medium. This was accompanied by an increase in matrix volume of about 20%. Some [14C]mannitol became permanently associated with mitochondria during preparation. It is suggested that mannitol may enter mitochondria during their preparation and cause swelling. The presence of 4mM-phosphate in the sucrose isolation medium stimulated the same parameters as did glucagon treatment, and also caused an increase in matrix volume of about 20%. These results confirm the conclusion that the mitochondrial volume may be important in the regulation of mitochondrial metabolism. They contradict the conclusion of others [Siess (1983) Hoppe-Seyler's Z. Physiol. Chem. 364, 279-290, 835-838] that mannitol rather than sucrose should be used when studying hormonal effects on mitochondrial metabolism. Reasons for the discrepancies in the results between groups studying the effects of hormones on mitochondrial metabolism are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.