Sisal is the most commonly used natural fiber in polymer composites due to its high strength, durability, and ability to stretch. In this present work, sisal and human hair were used as reinforcement for epoxy resin-based hybrid composites, and their effect on the mechanical properties was reported. Four composite plates with fiber volume fractions of 10%, 20%, 30%, and 40% were fabricated by the hand lay-up method. Chopped sisal fiber and human hair of 30 mm length were mixed with epoxy resin to fabricate the composites. In addition, high-speed steel (HSS) drills were used to study the influence of drilling parameters such as speed, feed, and drill point angle on the quality of the drilling. Three factors with three levels were considered for the design of the experiment. The drilling parameters were optimized using Grey Relational Analysis and the Taguchi method for the reduction of delamination. The experimental results indicate that a flexural strength of 38 MPa was achieved in a 60% epoxy, 20% sisal, and 20% human hair composite. NI vision assistant software was used to process the images taken on the drilled holes using the Matrix Vision camera. The optimization results showed that the feed rate played a pivotal role in deciding the delamination on the entry side of the hole. In contrast, the drill point angle significantly affects the delamination at the exit side of the hole. Better quality holes are achieved with a cutting speed of 2500 rpm and a feed rate of 50 m/min.
The main objective of this investigation is to study the microstructural features and evaluate the tensile strength, hardness, and acidic corrosion resistance of liquid metal stir casted aluminium-silicon carbide (Al-SiC) composite. As reinforcement for the Al alloy matrix, SiC particles were added to the matrix in the percentages of 0%, 10%, and 20%. The microstructure of Al-SiC composite was studied using optical microscope. The effect of addition of SiC particles on tensile strength and hardness of Al-SiC composite was analyzed.. There were significant improvements in tensile strength and hardness for Al–SiC composite reinforced with 20% SiC particles compared to unreinforced Al–SiC composite, and those improvements were of 14.70% and 26.88%, respectively. The evolution of harder SiC islands in the ductile matrix of aluminium alloy reinforce the Al-SiC composite which enhances the strength and hardness of Al-SiC composite. A weight loss method was used to determine corrosion rate. The samples of Al-SiC composite material were immersed in HCl, HNO3, and H2SO4 solutions for immersion times of 30 hours, 56 hours, and 80 hours. It was found that the weight % of reinforcement had the largest contribution to corrosion rate with 49.86% to that of acidic solution with 29.88%, followed by immersion time with 8.85% and acidic solution with a contribution of 29.88% to the corrosion rate. The Al-SiC composite developed using 20 wt. % of SiC particles showed higher corrosion rate due to the interfacial region formed due to the addition of greater wt % SiC particles to the pure alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.