A field demonstration was performed in which nanoscale bimetallic (Fe/Pd) particles were gravity-fed into groundwater contaminated bytrichloroethene and other chlorinated aliphatic hydrocarbons at a manufacturing site. With diameters on the order of 100-200 nm, the nanoparticles are uniquely suited to rapidly degrade redox-amenable contaminants and for optimal subsurface delivery and dispersion. Approximately 1.7 kg of the nanoparticles was fed into the test area over a 2-day period, resulting in minimal clogging of the injection well. The test area was located within a well-characterized region of the contaminant plume and included an injection well and three piezometer couplets spaced 1.5 m apart. Despite the low nanoparticle dosage, trichloroethene reduction efficiencies of up to 96% were observed over a 4-week monitoring period with the highest values observed at the injection well and adjacent piezometers. Data from the field assessment were consistent with the results of pre-injection laboratory studies, which showed rapid dechlorination of target chlorinated compounds accompanied by a sharp decrease of standard oxidation potential and an increase in pH.
Iron nanoparticles are increasingly being applied in site remediation and hazardous waste treatment. Nearly a decade after it was first proposed in 1996, the iron nanoparticle technology is at a critical stage of its developmental process. Significant research innovations have been made in terms of synthetic methods, surface property modification, and enhancement for field delivery and reactions. Extensive laboratory studies have demonstrated that nanoscale iron particles are effective for the treatment of a wide array of common groundwater contaminants such as chlorinated organic solvents, organochlorine pesticides, polychlorinated biphenyls (PCBs), organic dyes, and various inorganic compounds. Several field tests have also demonstrated the promising prospective for in situ remediation. Nonetheless, there are still considerable knowledge gaps on many fundamental scientific issues (e.g., fate, transport, and environmental impact) and economic hurdles, which could determine the acceptance of the technology within the academic community as well as by regulators and the private sector. An overview of the iron nanoparticle technology is provided in this article, beginning with a description of the process fundamentals. This is followed by a discussion of the synthetic schemes for the nanoparticle types developed at Lehigh University. Next, a summary of the major research findings is provided, highlighting the key characteristics and remediation-related advantages of the iron nanoparticle technology versus the granular/microscale iron technology. A discussion of challenges related to its future directions and environmental impact is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.