Autosomal dominant hypercholesterolemia (ADH; OMIM144400), a risk factor for coronary heart disease, is characterized by an increase in low-density lipoprotein cholesterol levels that is associated with mutations in the genes LDLR (encoding low-density lipoprotein receptor) or APOB (encoding apolipoprotein B). We mapped a third locus associated with ADH, HCHOLA3 at 1p32, and now report two mutations in the gene PCSK9 (encoding proprotein convertase subtilisin/kexin type 9) that cause ADH. PCSK9 encodes NARC-1 (neural apoptosis regulated convertase), a newly identified human subtilase that is highly expressed in the liver and contributes to cholesterol homeostasis.
Hypercholesterolemia is one of the major causes of coronary heart disease (CHD). The genes encoding the low-density lipoprotein receptor and its ligand apolipoprotein B, have been the two genes classically implicated in autosomal dominant hypercholesterolemia (ADH). Our discovery in 2003 of the first mutations of the proprotein convertase subtilisin kexin 9 gene (PCSK9) causing ADH shed light on an unknown actor in cholesterol metabolism that since then has been extensively investigated. Several PCSK9 variants have been identified, some of them are gain-of-function mutations causing hypercholesterolemia by a reduction of low-density lipoprotein (LDL) receptor levels; while others are loss-of-function variants associated with a reduction of LDL-cholesterol (LDL-C) levels and a decreased risk of CHD. In this review, we focus on reported variants, and their biological, clinical, and functional relevance. We also highlight the spectrum of hypercholesterolemia or hypobetalipoproteinemia phenotypes that are already associated with mutations in PCSK9. Finally, we present future prospects concerning this therapeutic target that might constitute a new approach to reduce cholesterol levels and CHD, and enhance the effectiveness of other lipid-lowering drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.