Autosomal dominant hypercholesterolemia (ADH; OMIM144400), a risk factor for coronary heart disease, is characterized by an increase in low-density lipoprotein cholesterol levels that is associated with mutations in the genes LDLR (encoding low-density lipoprotein receptor) or APOB (encoding apolipoprotein B). We mapped a third locus associated with ADH, HCHOLA3 at 1p32, and now report two mutations in the gene PCSK9 (encoding proprotein convertase subtilisin/kexin type 9) that cause ADH. PCSK9 encodes NARC-1 (neural apoptosis regulated convertase), a newly identified human subtilase that is highly expressed in the liver and contributes to cholesterol homeostasis.
. C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. Obesity. 2007;15:1996. Objective: The aim of this study was to assess the suitability of A/J and C57BL/6J mice of both sexes as models of some components of the human metabolic syndrome (MetS) under nutritional conditions more comparable with the actual worldwide diet responsible for the increased incidence of the MetS. Research Methods: We fed large cohorts (n ϭ 515) of two strains of mice, A/J and the C57BL/6J, and of both sexes a high-fat diet (HFD; 60% fat) that, in contrast with most previous reports using saturated fats, was enriched in monoand polyunsaturated fatty acids, thus more closely mimicking most Western diets, or a control diet (10% fat), for 20 weeks. Results: In sharp contrast to previous reports, weight gain and hyperleptinemia were similar in both strains and sexes. Hyperinsulinemia, glucose tolerance, insulin resistance, and hypercholesterolemia were observed, although with important differences between strains and sexes. A/J males displayed severely impaired glucose tolerance and insulin resistance. However, in contrast with C57BL6/J mice, which displayed overt type 2 diabetes, A/J mice of both sexes remained normoglycemic. Discussion: With important differences in magnitude and time course, the phenotypic and metabolic characteristics of both strains and both sexes on this HFD demonstrate that these models are very useful for identifying the mechanisms underlying progression or resistance to subsequent type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.