<p>In the era of rapid growth of cloud computing, performance calculation of cloud service is an essential criterion to assure quality of service. Nevertheless, it is a perplexing task to effectively analyze the performance of cloud service due to the complexity of cloud resources and the diversity of Big Data applications. Hence, we propose to examine the performance of Big Data applications with Hadoop and thus to figure out the performance in cloud cluster. Hadoop is built based on MapReduce, one of the widely used programming models in Big Data. In this paper, the performance analysis of Hadoop MapReduce WordCount application for Twitter data is presented. A 4-node in-house Hadoop cluster was setup and experiment was carried out for analyzing the performance. Through this work, it was concluded that Hadoop is efficient for BigData applications with 3 or more nodes with replication factor 3. Also, it was observed that system time was relatively more compared to user time for BigData applications beyond 80GB. This experiment had also thrown certain pattern on actual data blocks used to process the WordCount application. </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.