This research examines the residual mechanical properties of normal and recycled aggregate concrete when subjected to elevated temperatures. The concrete specimens containing recycled aggregate (0%, 50%, 75%, and 100%) were exposed to different temperatures (25, 200, 400, and 600°C) in a muffle furnace at a heating rate of 10°C/min. The variations in flexural strength, compressive strength, and density were then tested according to ASTM standards. Findings from this investigation indicate that the degradation in the mechanical strength of concrete does not seem to be significantly affected by the increase in the percentage of recycled aggregates. However, a significant and linear decrease in the density was observed at 400°C with an increase in the percentage of recycled aggregates. The degradation of the compressive and flexural strengths of recycled aggregate concrete with increasing temperatures obtained from the experimental analysis was compared with the analytical predictions provided by Eurocode 2. Moreover, simplified equations have been proposed to estimate the degradation of the mechanical properties of recycled aggregate concrete at higher temperatures. The incorporation of recycled aggregates into concrete resulted in satisfactory residual performance.
PurposeThe extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply, fire can break out anywhere, at any time and for any number of reasons. Despite the apparent need, the fire design of structures still relies on expensive fire tests, complex finite element simulations and outdated procedures with little room for innovation. This paper aims to discuss the aforementioned issues.Design/methodology/approachThis primer highlights the latest state of the art in this area with regard to performance-based design in fire structural engineering. In addition, this short review also presents a series of examples of successful implementation of performance-based fire design of structures from around the world.FindingsA comparison between global efforts clearly shows the advances put forth by European and Oceanian efforts as opposed to the rest of the world. In addition, it can be clearly seen that most performance-based fire designs are related to steel and composite structures.Originality/valueIn one study, this paper presents a concise and global view to performance-based fire design of structures from success stories from around the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.