High-frequency (1 MHz–1 GHz) transmission line measurements were used to determine the composition and frequency-dependent complex permittivities and complex permeabilities of ferroelectric/ferrimagnetic (barium titanate and a magnesium-copper-zinc ferrite) composites. The effective medium rules of Maxwell–Garnett give both lower and upper bounds for the effective permittivities and permeabilities and yield accurate estimates of the bulk electric and magnetic properties at low volume fill fraction of either component provided the proper host matrix is chosen. Bruggeman theory yielded the best predictive values for the permittivity and permeability over the entire composition range. In all cases these complex quantities were shown to be constrained by Bergman–Milton bounds.
This paper describes a process by which highly reactive yttria powder can be sintered to high density at a relatively low firing temperature to form a variety of useful ceramic items. The process utilizes an aqueous polymer to precipitate a yttrium precursor. The yttrium precursor is thermally treated to form a friable oxide ash. After a double-calcination-grind procedure, high-density yttria items such as substrates, crucibles, and nozzles can be fabricated. [
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.