We analyzed ground-and space-based observations of the eruptive flare (3B/X6.5) and associated Moreton wave (∼850 km s −1 ; ∼270 • azimuthal span) of 2006 December 6 to determine the wave driver-either flare pressure pulse (blast) or coronal mass ejection (CME). Kinematic analysis favors a CME driver of the wave, despite key gaps in coronal data. The CME scenario has a less constrained/smoother velocity versus time profile than is the case for the flare hypothesis and requires an acceleration rate more in accord with observations. The CME picture is based, in part, on the assumption that a strong and impulsive magnetic field change observed by a GONG magnetograph during the rapid rise phase of the flare corresponds to the main acceleration phase of the CME. The Moreton wave evolution tracks the inferred eruption of an extended coronal arcade, overlying a region of weak magnetic field to the west of the principal flare in NOAA active region 10930. Observations of Hα foot point brightenings, disturbance contours in off-band Hα images, and He i 10830 Å flare ribbons trace the eruption from 18:42 to 18:44 UT as it progressed southwest along the arcade. Hinode EIS observations show strong blueshifts at foot points of this arcade during the post-eruption phase, indicating mass outflow. At 18:45 UT, the Moreton wave exhibited two separate arcs (one off each flank of the tip of the arcade) that merged and coalesced by 18:47 UT to form a single smooth wave front, having its maximum amplitude in the southwest direction. We suggest that the erupting arcade (i.e., CME) expanded laterally to drive a coronal shock responsible for the Moreton wave. We attribute a darkening in Hα from a region underlying the arcade to absorption by faint unresolved post-eruption loops.
Analyses of multiwavelength data sets for a solar eruption at $21:30 UT on 2002 December 19 show evidence for the disappearance of a large-scale, transequatorial coronal loop ( TL). In addition, coronal manifestations of the eruption ( based on SOHO EIT and LASCO images) include large-scale coronal dimming, flares in each associated active region in the northern and southern hemispheres, and a halo CME. We present detailed observations of the chromospheric aspects of this event based on H images obtained with the ISOON telescope. The ISOON images reveal distant flare precursor brightenings, sympathetic flares, and, of most interest herein, four nearly cospatial propagating chromospheric brightenings. The speeds of the propagating disturbances causing these brightenings are 600-800 km s À1 . The inferred propagating disturbances have some of the characteristics of H and EIT flare waves (e.g., speed, apparent emanation from the flare site, subsequent filament activation). However, they differ from typical H chromospheric flare waves (also known as Moreton waves) because of their absence in off-band H images, small angular arc of propagation (<30 ), and their multiplicity. Three of the four propagating disturbances consist of a series of sequential chromospheric brightenings of network points that suddenly brighten in the area beneath the TL that disappeared earlier. SOHO MDI magnetograms show that the successively brightened points that define the inferred propagating disturbances were exclusively of one polarity, corresponding to the dominant polarity of the affected region. We speculate that the sequential chromospheric brightenings represent footpoints of field lines that extend into the corona, where they are energized in sequence by magnetic reconnection as coronal fields tear away from the chromosphere during the eruption of the transequatorial CME. We report briefly on three other events with similar narrow propagating disturbances that were confined to a single hemisphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.