The authors have constructed an array of 12 piezoelectric ejectors for printing biological materials. A single-ejector footprint is 8 mm in diameter, standing 4 mm high with 2 reservoirs totaling 76 µL. These ejectors have been tested by dispensing various fluids in several environmental conditions. Reliable drop ejection can be expected in both humidity-controlled and ambient environments over extended periods of time and in hot and cold room temperatures. In a prototype system, 12 ejectors are arranged in a rack, together with an X-Y stage, to allow printing any pattern desired. Printed arrays of features are created with a biological solution containing bovine serum albumin-conjugated oligonucleotides, dye, and salty buffer. This ejector system is designed for the ultra-high-throughput generation of arrays on a variety of surfaces. These single or racked ejectors could be used as long-term storage vessels for materials such as small molecules, nucleic acids, proteins, or cell libraries, which would allow for efficient preprogrammed selection of individual clones and greatly reduce the chance of cross-contamination and loss due to transfer. A new generation of design ideas includes plastic injection-molded ejectors that are inexpensive and disposable and handheld personal pipettes for liquid transfer in the nanoliter regime. (Journal of Biomolecular Screening 2004:85-94)
SYNOPSISAutomotive paints with clear-coat surfaces can be physically damaged by exposure to acidic reagents produced in a smog chamber designed to reproduce real environmental conditions. Visual and reflectance microscopy observations show that deposition of material formed from the reaction of the clear coat and the reagent drop occurs on the paint surface after the drop evaporates to a critical size, with the greatest deposition occurring at the edge of the drop. This type of deposition suggests a free-energy minimization process favoring the formation of stable nuclei at the reagent drop edge. With heating after the drop evaporation to simulate exposure to the sun, a damaged area containing sulfur that is in the shape of a circular ring is observed at the location of the deposits. The majority of the visual damage appears to result from a n interaction between the deposit and the paint a t elevated temperatures. Results from profilometry, scanning electron microscopy, and reflectance microscopy show that the damaged areas are ring-shaped cracked blisters on the surface resulting from the clear coat separating into layers. 0 1993 John Wiley & Sons, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.