The activity of the pedunculopontine tegmental nucleus (PPTg) neurons was recorded in three unrestrained cats operantly conditioned to perform a lever-release movement. The movement had to be initiated either rapidly after a (click) stimulus in a simple reaction-time paradigm or had to be delayed after the same stimulus in trials identified by a tone cue. Successful trials were rewarded by a food pellet. A total of 107 neurons were recorded with microelectrodes. Brief spike neurons (mean duration: 0.7 ms) and broad spike neurons (mean duration: 2 ms) presumed to be cholinergic were detected. Of the 73 neurons localized in the PPTg area, 53 had brief spikes and 20 broad spikes. Changes in activity most commonly occurred very early after the stimulus or during the reinforcement process. Most neurons with brief spikes exhibited very early excitation after the stimulus and reinforcement-related activity. These neurons had a mean activity of 23.7 impulses/s in the period preceding the stimulus. The onset of activation after the stimulus had a latency of 8.6+/-6.9 ms (mean+/-SD), with a range of 4-35 ms. In trials where the movement had to be delayed after the stimulus, the early activation disappeared or was considerably reduced, showing that it was context-dependent. A small proportion of neurons with brief spikes initially decreased activity after the stimulus, but with a latency >9 ms. All the neurons with broad spikes, except one, had reinforcement-related activity. Half of them showed exclusively reinforcement-related activity, the other half also early activation after the stimulus. These neurons were about half as active in the period preceding the stimulus occurrence than the neurons with brief spikes. The early context-dependent activation is discussed in relation to the excitatory projection of PPTg neurons on the subthalamic nucleus. The reinforcement-related activity, preferentially evidenced in broad spike neurons presumed to be cholinergic, is speculated to be associated with cholinergic projection of PPTg neurons to the dopaminergic neurons of the substantia nigra. Finally, the role of PPTg in the ongoing control of motor performance and reinforcement processes is discussed in relation to the basal ganglia circuitry.
The activity of subthalamic nucleus neurons related to motor performance was studied in three unrestrained cats operantly conditioned to perform a lever-release movement. The movement was initiated either rapidly after the trigger stimulus (a brief sound) in a simple reaction-time paradigm or after a delay in trials identified by a tone cue. These paradigms were randomly presented. The activity of 171 neurons was recorded in the contralateral and in the ipsilateral subthalamic nucleus, with respect to the performing limb. The mean spontaneous activity of cells in the ipsilateral side (18.5 +/- 13.8 imp/s, mean +/- SD) was higher than that in the contralateral side (8.5 +/- 8.1 imp/s). A total of 145 cells (85%) presented significant changes in activity in relation to the lever-release movement (task-related cells). The remaining 26 cells were either related to other events of the task (n = 15; lever-press or reinforcement occurrence) or not related at all to the task performance (n = 11). The majority of changes of activity of task-related cells were initial increases in discharge, which started on average, 127 ms before movement onset and lasted several hundreds of milliseconds. These increases in discharge were more frequent in the contralateral side (75 of 80 task-related cells, 94%) than in the ipsilateral side (43 of 65 task-related cells, 66%). The changes in activity, either increases or decreases, occurred early after the trigger stimulus, since 62% of them had a latency of less than 100 ms. Although the mean latency of initial increases was rather similar in both sides (97 ms contralateral versus 104 ms ipsilateral), the contralateral side was characterized by a high proportion of very early responses (less than 20 ms). For most neurons, the early changes in activity described above were absent after the trigger stimulus in the delayed condition. For certain neurons, the changes in activity prior to movement were different in reaction-time condition and in delayed condition, showing that the pattern of activity preceding movement might depend on the temporal requirements for motor initiation. The results suggest that a significant proportion of subthalamic cells are involved in the preparation and the initiation phases of the lever-release movement studied, although other hypotheses (e.g. stimulus-related responses) cannot be definitely ruled out. The timings and patterns of the changes in activity observed in the subthalamic nucleus in the present study, and in the pallidal complex previously, cannot be explained easily by the classical scheme where the external pallidum inhibits the subthalamic nucleus. The results suggest rather that the subthalamic nucleus, driven by a yet-to-be-determined excitatory input, exerts an excitatory influence on the pallidum and plays a crucial role in the control of the basal ganglia output neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.