Premature infants at risk for bronchopulmonary dysplasia (BPD) are often treated with dexamethasone (Dex), which has been shown to suppress inflammatory processes in the lung. To elucidate a possible direct influence on the fibroproliferative component of the disease, we studied the effects of Dex in therapeutic and supratherapeutic dosages (5-50 nmol/L) on proliferation, chemotaxis, procollagen I, and fibronectin metabolism of human fetal lung fibroblasts in vitro. Proliferation was inhibited by Dex in a dose-dependent manner. Chemotactic activity in response to conditioned medium of human fetal fibroblasts also showed a dose-dependent inhibition after pretreatment with Dex. The amount of procollagen I C-terminal propeptide and fibronectin per cell in the cell culture supernatant was increased in the presence of Dex. Our results show that Dex does not uniformly suppress the fibroproliferative activity of human fetal lung fibroblasts, which may explain in part the unsatisfactory long-term effects of Dex treatment in BPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.