Elastic properties of the heavy fermion superconductor URu2Si2Wolf, B.; Sixl, W.; Graf, R.; Finsterbusch, D.; Bruls, G.; Luthi, B.; Knetsch, E.A.; Menovsky, A.A.; Mydosh, J.A.
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Download date: 08 May 2018Journal of Low Temperature Physics, Vol. 94, Nos. 3/4, 1994
We report on a detailed comparison of the thermodynamic properties of the heavy-fermion system CeCu6 which can be described as a Fermi liquid at low temperatures T < 0.1 K, and CeCus.9Auo.l where strong deviations from the Fermi-liquid behaviour were found previously in the T dependence of the specific heat C , magnetization M and electrical resistivity p. The specific heat, magnetization and elastic constants are investigated in a large range of magnetic fields, corroborating the idea that the non-Fermi-liquid behaviour arises from low-lying spin excitations. For the elastic constants, a striking linear T dependence is found for CeCus 9Auo I in contrast to the T2 Fermiliquid behaviour of CeCus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.