Second generation (2G) high temperature superconductor (HTS) wires are based on a coated conductor technology. They follow on from a first generation (1G) HTS wire consisting of a composite multifilamentary wire architecture. During the last couple of years, rapid progress has been made in the development of 2G HTS wire, which is now displacing 1G HTS wire for most if not all applications. The engineering critical current density of these wires matches or exceeds that of 1G wire, and the mechanical properties are also superior. Scale-up of manufacturing is proceeding rapidly, with several companies already supplying the order of 10 km annually for test and demonstration. Coils of increasing sophistication are being demonstrated. One especially attractive application, that relies on the specific properties of 2G HTS wire, is fault current limitation. By incorporating a high resistivity stabilizer in the coated conductor, one can achieve high resistance in a quenched state during a fault event and at the same time provide significant heat capacity to limit the temperature rise. A test of a 2.25 MVA single phase system at 7.5 kV employing such wire by the Siemens/AMSC team has demonstrated all the key features required for a cost-effective commercial system. A novel approach to providing fault current limiting functionality in HTS cables has also been introduced.
In the last decade, significant advances in the performance of second generation (2G) high temperature superconducting wire have made it suitable for commercially viable applications such as electric power cables and fault current limiters. Currently, the U.S. Department of Homeland Security is co-funding the design, development and demonstration of an inherently fault current limiting HTS cable under the Hydra project with American Superconductor and Consolidated Edison. The cable will be approximately 300m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8kV. The underground cable will be installed and energized in New York City. The project is led by American Superconductor teamed with Con Edison, Ultera (Southwire and nkt cables joint venture), and Air Liquide. This paper describes the general goals, design criteria, status and progress of the project. Fault current limiting has already been demonstrated in 3 m prototype cables, and test results on a 25 m three-phase cable will be presented. An overview of the concept of a fault current limiting cable and the system advantages of this unique type of cable will be described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.