Context-awareness computing is a research field which often refers to healthcare as an interesting and rich area of application. Context aware computing attains environments monitoring by means of sensors to provide relevant information or services according to the identified context. In particular, wireless ad hoc sensor networks for medical purposes are playing an increasing role within healthcare. Body Sensor Networks (BSN) are being designed for prophylactic and follow-up monitoring of patients in e.g. their homes, during hospitalization, and in emergencies. This work presents an integrated environment aimed at providing personalized healthcare services which appropriately meet the user@?s context. Deploying the semantics embedded in web services and context models is a mandatory step in the automation of service discovery, invocation and composition. Nevertheless, in a context aware domain purely logic-based reasoning on respectively context and services may not be enough. The main idea of this work is related to enrich with qualitative representation of context underling data by means of Fuzzy Logic in order to automatically recognize the context and to consequently find the right set of healthcare services among the available ones. Semantic formalisms (e.g., OWL, OWL-S, etc.) enable the context and services modeling in terms of domain ontology concepts. On the other hand, soft computing techniques support activity of unsupervised context analysis and healthcare semantic service discovery. Goal is to define context-aware system whose quality of retrieved services relies on the acquisition of user context by means of a robust theoretical approach. Moreover, this work defines hybrid architecture which attains a synergy between the agent-based paradigm and the fuzzy modeling. Specifically, the system exploits some task oriented agents in order to achieve context recognition, services matchmaking and brokerage activities
This work introduces an OWL-based upper ontology, called OWL-FC (Ontology Web Language for Fuzzy Control), capable to support a semantic definition of Fuzzy Control. It focuses on the fuzzy rules representation by providing domain independent ontology, supporting interoperability and favoring domain ontologies re-usability. The main contribution is that OWL-FC exploits Fuzzy Logic in OWL to model vagueness and uncertainty of the real world. Moreover, OWL-FC enables automatic discovery and execution of fuzzy controllers, by means of context aware parameter setting: appropriate controllers can be activated, depending on the parameters proactively identified in the work environment. In fact, the semantic modeling of concepts allows the characterization of constraints and restrictions for the identification of the right matches between concepts and individuals. OWL-FC ontology provides a wide, semantic-based interoperability among different domain ontologies, through the specification of fuzzy concepts, independently by the application domain. Then, OWL-FC is coherent to the Semantic Web infrastructure and avoids inconsistencies in the ontology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.