TiAl-based alloys have attractive properties as light weight heat-resisting material. In the present work, the influence of Cu, Zn, Ag and Se on the oxidation behavior of TiAl was investigated by ion implantation at acceleration voltage of 50 kV and ion doses of 1019 to 2x1021 ions/m2. The oxidation behavior was assessed by a cyclic oxidation test at 1200 K in a flow of purified oxygen under atmospheric pressure. The oxidation products were analyzed by conventional methods including X-ray diffractometry, SEM and EPMA. The implantation of Zn and Cu improves the oxidation resistance significantly by forming virtually Al2O3 scales, while Ag and Se enhance the oxidation. The improvement by Zn is attributable to the formation of complex oxide of Zn in the initial stage of oxidation. The oxygen partial pressure under the layer seems to be very low, resulting in the formation of alumina scale due to a selective oxidation of Al. The influence of Cu is not certain. The influence of Ag and Se is explained in terms of Al depletion in the implanted layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.