The article states the advantages of carbothermic perovskite concentrate decomposition in comparison with hydrometallurgical methods. The papers using the carbothermic method are noted. The paper provides information on existing perovskite processing methods that found no industrial application. The results obtained when studying titanium raw material decomposition in case of CaO·TiO2 artificially synthesized perovskite are given. Artificial perovskite was synthesized in a muffle furnace where a mixture of oxides (CaO = 41,2 wt.% and TiO2 = 58,8 wt.%) was premixed for 15 minutes and then briquetted into pellets using a 15 mm steel mold on a 147 МPa hydraulic press. The temperature of CaTiO3 synthesis was 1300 °C with a holding time of 4 hours. Experiments with a different carbon excess (20 and 30 wt.% of the content stoichiometrically required to recover perovskite components) were carried out. The carbothermic process of artificial perovskite decomposition (4 g pellets) was carried out in a vacuum furnace with a graphite heater in two stages: at 1500 °C, 1 hour holding time and 10,1 kPa residual pressure in an argon atmosphere at the first stage, and at t = 1750 °C, τ = 1 h, 1,3 Pa residual chamber pressure at the second one. Reaction products were studied by X-ray diffraction analysis on the «D8 Advance Bruker AXS» diffractometer. Experimental results demonstrated the practical possibility of titanium and calcium extraction from perovskite using the carbothermic method.
The article examines research on high-temperature reducing roasting of rare-earth-rare metal ores of the Chuktukon deposit. The effect of process temperature and consumption of reducing agent (coke) on distribution of niobium, manganese and phosphorus between metal and slag phases was studied. It was shown that a decrease in coke consumption in the range of 15–19 % promotes an increase in the extraction of niobium and manganese into the slag phase, while the reduction of phosphorus to metal increases with an excessive consumption of the reducing agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.