An exact and very general Lagrangian-mean description of the back effect of oscillatory disturbances upon the mean state is given. The basic formalism applies to any problem whose governing equations are given in the usual Eulerian form, and irrespective of whether spatial, temporal, ensemble, or ‘two-timing’ averages are appropriate. The generalized Lagrangian-mean velocity cannot be defined exactly as the ‘mean following a single fluid particle’, but in cases where spatial averages are taken can easily be visualized, for instance, as the motion of the centre of mass of a tube of fluid particles which lay along the direction of averaging in a hypothetical initial state of no disturbance.The equations for the Lagrangian-mean flow are more useful than their Eulerian-mean counterparts in significant respects, for instance in explicitly representing the effect upon mean-flow evolution of wave dissipation or forcing. Applications to irrotational acoustic or water waves, and to astrogeophysical problems of waves on axisymmetric mean flows are discussed. In the latter context the equations embody generalizations of the Eliassen-Palm and Charney-Drazin theorems showing the effects on the mean flow of departures from steady, conservative waves, for arbitrary, finite-amplitude disturbances to a stratified, rotating fluid, with allowance for self-gravitation as well as for an external gravitational field.The equations show generally how the pseudomomentum (or wave ‘momentum’) enters problems of mean-flow evolution. They also indicate the extent to which the net effect of the waves on the mean flow can be described by a ‘radiation stress’, and provide a general framework for explaining the asymmetry of radiation-stress tensors along the lines proposed by Jones (1973).
Conservable quantities measuring ‘wave activity’ are discussed. The equation for the most fundamental such quantity, wave-action, is derived in a simple but very general form which does not depend on the approximations of slow amplitude modulation, linearization, or conservative motion. The derivation is elementary, in the sense that a variational formulation of the equations of fluid motion is not used. The result depends, however, on a description of the disturbance in terms of particle displacements rather than velocities. A corollary is an elementary but general derivation of the approximate form of the wave-action equation found by Bretherton & Garrett (1968) for slowlyvarying, linear waves.The sense in which the general wave-action equation follows from the classical ‘energy-momentum-tensor’ formalism is discussed, bringing in the concepts of pseudomomentum and pseudoenergy, which in turn are related to special cases such as Blokhintsev's conservation law in acoustics. Wave-action, pseudomomentum and pseudoenergy are the appropriate conservable measures of wave activity when ‘waves’ are defined respectively as departures from ensemble-, space- and time-averaged flows.The relationship between the wave drag on a moving boundary and the fluxes of momentum and pseudomomentum is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.