The present study was designed to investigate the role of adenosine in the hypoxic depression of synaptic transmission in rat hippocampus. An in vivo model of hypoxic synaptic depression was developed in which the common carotid artery was occluded on one side in the urethane-anesthetized rat. Inspired oxygen levels were controlled through a tracheal cannula. Rats were placed in a stereotaxic apparatus for stimulation and recording of bilateral hippocampal field excitatory postsynaptic potentials. The percent inspired oxygen could be reduced to levels that produced a reversible and repeatable depression of evoked synaptic transmission restricted to the hippocampus ipsilateral to the occlusion. Further reduction in the level of inspired oxygen depressed synaptic transmission recorded from both hippocampi. The adenosine nonselective antagonist caffeine and the A(1) selective antagonist 8-cyclopentyltheophylline prevented the initial depression in synaptic transmission. We conclude that the initial depression of synaptic transmission observed in the rat hippocampus in vivo is due to endogenous adenosine acting at neuronal adenosine A(1) receptors.
Nine alligators, Alligator mississippiensis, were injected with 133Xe and the clearance half times measured in response to heating and cooling. Mean half times for thermostable, heating, and cooling conditions were 12.2, 8.6, and 28.3 min, respectively, indicating cutaneous vasodilation in response to local heating and reduced blood flow during cooling. Alterations of cutaneous blood flow occurred before changes in body temperature or heart rate. Warming portions of the animal while shading the injection site resulted in reduced blood flow when heat loss occurred. Skin thickness (S in cm) was related to body mass (M in kg) as S = 0.08 M0.38. Cutaneous blood flow per unit area was found to increase with increasing body mass from approximately 0.0025 to 0.025 ml blood-cm-2 of skin-min-1 during warming and from 0.0018 to 0.0045 during cooling for the 0.18--8.6 kg animals, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.