An AISI 4340 Steel (325 BHN) was machined at various speeds up to 2500 m/min (8000 SFPM). Longitudinal midsections of the chips were examined metallurgically to delineate the differences in the chip formation characteristics at various speeds. Chips were found to be continuous at 30 to 60 m/min (100 to 200 SFPM) but discontinuous below this speed. Instabilities in the cutting process, leading to different types of cyclic chip formations, were observed at cutting speeds above 60 m/min (200 SFPM). Fully developed catastrophic shear bands separated by large areas (segments) of relatively less deformed material, similar to that when machining titanium alloys, were observed in the chips at cutting speeds above 275 m/min (800 SFPM). The intense shear bands between the segments appeared to have formed subsequent to the localized intense deformation of the segment in the primary shear zone. As the cutting speed increases, the extent of contact between the segments is found to decrease rapidly. At speeds of 1000 m/min (3200 SFPM) and above, due to rapid intense, localized shear between the segments, these segments were found to separate completely as isolated segments instead of being held intact as a long chip. The speed at which this decohesion occurs was found to depend upon the metallurgical state of the steel machined and its hardness. As in the case of machining titanium alloys, the deformation of the chip as it slides on the tool face, i.e., “secondary shear zone,” appeared to be negligible when machining this AISI 4340 steel at high speed. Based on the metallurgical study of the chip and the similarities of machining this material at high speed and that of titanium alloys at normal speed, a cyclic phenomenon in the primary shear zone is identified as the source of instability responsible for the large-scale heterogeneity and a mechanism of chip formation when machining AISI 4340 steel at high speed is proposed.
A theory of rolling friction featuring the importance of elastic hysteresis losses is presented. A simple model of retarded elasticity is chosen to represent the physical properties of the material. A prediction resulting from the theory is that the coefficient of friction for a relatively hard sphere rolling on a softer base material should vary with speed so as to go through a maximum. This relationship resembles closely the variation of mechanical loss with frequency. The results are not restricted to rolling but also apply to well-lubricated sliding where shearing forces have been minimized. Although the theory is developed for a material with idealized physical properties, it nevertheless affords a basis for comparing real materials and for predicting their frictional properties in cases where deformation losses are predominant.
Results of a four-year Advanced Machining Research Program (AMRP) to provide a science base for faster metal removal through high-speed machining (HSM), high-throughput machining (HTM) and laser-assisted machining (LAM) are presented. Emphasis was placed on turning and milling of aluminum-, nickel-base-, titanium-, and ferrous alloys. Experimental cutting speeds ranged from 0.0013 smm (0.004 sfpm) to 24,500 smm (80,000 sfpm). Chip formation in HSM is found to be associated with the formation of either a continuous, ribbon-like chip or a segmental (or shear-localized) chip. The former is favored by good thermal properties, low hardness, and fcc/bcc crystal structures, e.g., aluminum alloys and soft carbon steels, while the latter is favored by poor thermal properties, hcp structure, and high hardness, e.g., titanium alloys, nickel base superalloys, and hardened alloy steels. Mathematical models were developed to describe the primary features of chip formation in HSM. At ultra-high speed machining (UHSM) speeds, chip type does not change with speed nor does tool wear. However, at even moderately high speeds, tool wear is still the limiting factor when machining titanium alloys, superalloys, and special steels. Tool life and productivity can be increased significantly for special applications using two novel cutting tool concepts – ledge and rotary. With ledge inserts, titanium alloys can be machined (turning and face milling) five times faster than conventional, with long tool life (~ 30 min) and cost savings up to 78 percent. A stiffened rotary tool has yielded a tool life improvement of twenty times in turning Inconel 718 and about six times when machining titanium 6A1-4V. Significantly increased metal removal rates (up to 50 in.3/min on Inconel 718 and Ti 6A1-4V) have been achieved on a rigid, high-power precision lathe. Continuous wave CO2 LAM, though conceptually feasible, limits the opportunities to manufacture DOD components due to poor adsorption (~ 10 percent) together with high capital equipment and operating costs. Pulse LAM shows greater promise, especially if new laser source concepts such as face pump lasers are considered. Economic modeling has enabled assessment of HSM and LAM developments. Aluminum HSM has been demonstrated in a production environment and substantial payoffs are indicated in airframe applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.