The kinetics, morphology, and elemental distributions associated with the decomposition of austenite in Fe-0.30C-6.3W were surveyed, especially in the bay region of the time-temperature-transformation (TTT) diagram. Carbide precipitation characteristics were of particular interest. Similar to Fe-C-Mo and Fe-C-Cr alloys, grain-and twin-boundary bainite containing sheets of alloy carbides dominated the microstructure at and above the bay, while popcorn-like bainite was observed immediately below the bay. Nonequilibrium carbide-phase combinations were obtained both above and below the bay, although W partitioning to the alloy carbides was always observed. The carbon level in the remaining austenite increased with reaction time at a given temperature, which, at the later stages of reaction, helped trigger the growth of a constituent containing a high density of nonlamellar carbides. These nonequilibrium reaction-path characteristics are considered to originate from crystallographic and interfacial structure constraints affecting the nucleation of carbides at ferrite-austenite interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.