The design of analogue electronic experiments to investigate phenomena in nonlinear dynamics, especially stochastic phenomena, is described in practical terms. The advantages and disadvantages of this approach, in comparison to more conventional digital methods, are discussed. It is pointed out that analogue simulation provides a simple, inexpensive, technique that is easily applied in any laboratory to facilitate the design and implementation of complicated and expensive experimental projects; and that there are some important problems for which analogue methods have so far provided the only experimental approach. Applications to several topical problems are reviewed. Large rare fluctuations are studied through measurements of the prehistory probability distribution, thereby testing for the first time some fundamental tenets of fluctuation theory. It has thus been shown for example that, whereas the fluctuations of equilibrium systems obey time-reversal symmetry, those under non-equilibrium conditions are temporally asymmetric. Stochastic resonance, in which the signal-to-noise ratio for a weak periodic signal in a nonlinear system can be enhanced by added noise, has been widely studied by analogue methods, and the main results are reviewed; the closely related phenomena of noise-enhanced heterodyning and noiseinduced linearization are also described. Selected examples of the use of analogue methods for the study of transient phenomena in time-evolving systems are reviewed. Analogue experiments with quasimonochromatic noise, whose power spectral density is peaked at some characteristic frequency, have led to the discovery of a range of interesting and often counter-intuitive effects. These are reviewed and related to large fluctuation phenomena. Analogue studies of two examples of deterministic nonlinear effects, modulation-induced negative differential resistance (MINDR) and zero-dispersion nonlinear resonance (ZDNR) are described. Finally, some speculative remarks about possible future directions and applications of analogue experiments are discussed.
LARGE FLUCTUATIONS occur universally in Nature. They are responsible for e.g. nucleation at phase transitions, chemical reactions, mutations in DNA sequences, protein transport in biological cells, and failures of electronic devices. The idea 1,2 that they provide a conceptual bridge between microscopic and macroscopic motion underlies many discussions 2−5 of how the irreversible thermodynamic behaviour of matter in bulk relates to the completely reversible (classical or quantum) mechanical laws describing its constituent atoms or molecules. The theory of large fluctuations has been developed through e.g. Hamiltonian 6,7 and equivalent path-integral 8−12 formulations. It remains largely untested, partly on account of the rarity of such events, and partly because the possibility of quantitative experiments could not be
We outline the historical development of stochastic resonance (SR), a phenomenon in which the signal and/or the signal-to-noise ratio in a nonlinear system increase with increasing intensity of noise. We discuss basic theoretical ideas explaining and describing SR, and we review some revealing experimental data that place SR within the wider context of statistical physics. We emphasize the close relationship of SR to some effects that are well known in condensed-matter physics.
We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.