Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document Nucl. Fusion 39 2137-2664, is reviewed. Recent theoretical and experimental research has made important advances in both understanding and control of MHD stability in tokamak plasmas. Sawteeth are anticipated in the ITER baseline ELMy H-mode scenario, but the tools exist to avoid or control them through localized current drive or fast ion generation. Active control of other MHD instabilities will most likely be also required in ITER. Extrapolation from existing experiments indicates that stabilization of neoclassical tearing modes by highly localized feedback-controlled current drive should be possible in ITER. Resistive wall modes are a key issue for S128 Chapter 3: MHD stability, operational limits and disruptions advanced scenarios, but again, existing experiments indicate that these modes can be stabilized by a combination of plasma rotation and direct feedback control with non-axisymmetric coils. Reduction of error fields is a requirement for avoiding non-rotating magnetic island formation and for maintaining plasma rotation to help stabilize resistive wall modes. Recent experiments have shown the feasibility of reducing error fields to an acceptable level by means of non-axisymmetric coils, possibly controlled by feedback. The MHD stability limits associated with advanced scenarios are becoming well understood theoretically, and can be extended by tailoring of the pressure and current density profiles as well as by other techniques mentioned here. There have been significant advances also in the control of disruptions, most notably by injection of massive quantities of gas, leading to reduced halo current fractions and a larger fraction of the total thermal and magnetic energy dissipated by radiation. These advances in disruption control are supported by the development of means to predict impending disruption, most notably using neural networks. In addition to these advances in means to control or ameliorate the consequences of MHD instabilities, there has been significant progress in improving physics understanding and modelling. This progress has been in areas including the mechanisms governing NTM growth and seeding, in understanding the damping controlling RWM stability and in modelling RWM feedback schemes. For disruptions there has been continued progress on the instability mechanisms that underlie various classes of disruption, on the detailed modelling of halo currents and forces and in refining predictions of quench rates and disruption power loads. Overall the studies reviewed in this chapter demonstrate that MHD instabilities can be controlled, avoided or ameliorated to the extent that they should not compromise ITER operation, though they will necessarily impose a range of constraints.
The major increase in discharge duration and plasma energy in a next step DT fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety and performance. Erosion will increase to a scale of several centimetres from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma facing components. Controlling plasma-wall interactions is critical to achieving high performance in present day tokamaks, and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena stimulated an internationally co-ordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor project (ITER), and significant progress has been made in better understanding these issues. The paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next step fusion reactors. Two main topical groups of interaction are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation and (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R&D avenues for their resolution are presented.
Abstract.Progress, since the ITER Physics Basis publication, in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Experimental areas where significant progress has taken place are : energy transport in the SOL in particular of the anomalous transport scaling, particle transport in the SOL that plays a major role in the interaction of diverted plasmas with the main chamber material elements, ELM energy deposition on material elements and the transport mechanism for the ELM energy from the main plasma to the plasma facing components, the physics of plasma detachment and neutral dynamics including the edge density profile structure and the control of plasma particle content and He removal, the erosion of low and high Z materials in fusion devices, their transport to the core plasma and their migration at the plasma edge including the formation of mixed materials, the processes determining the size and location of the retention of tritium in fusion devices and methods to remove it and the processes determining the efficiency of the various fuelling methods as well as their development towards the ITER requirements. This experimental progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma-materials interaction and the further validation of these models by comparing their predictions with the new experimental results. Progress in the modelling development and validation has been mostly concentrated in the following areas : refinement of the predictions for ITER with plasma edge modelling codes by inclusion of detailed geometrical features of the divertor and the introduction of physical effects, which can play a 2 major role in determining the divertor parameters at the divertor for ITER conditions such as hydrogen radiation transport and neutral-neutral collisions, modelling of the ion orbits at the plasma edge, which can play a role in determining power deposition at the divertor target, models for plasma-materials and plasma dynamics interaction during ELMs and disruptions, models for the transport of impurities at the plasma edge to describe the core contamination by impurities and the migration of eroded materials at the edge plasma and its associated tritium retention and models for the turbulent processes that determine the anomalous transport of energy and particles across the SOL. The implications for the expected performance of the reference regimes in ITER, the operation of the ITER device and the lifetime of the plasma facing materials are discussed. Introduction.This chapter outlines the significant progress achieved since the ITER Physics Basis in understanding basic scrape-off layer (SOL) and divertor processes in a tokamak. The interaction of plasma with first-wall surfaces will have considerable impact on the performance of fusion plasmas, the lifetime of plasma facing components, and the retention of tritium in next step Burning Plasma E...
Intermittent plasma objects ͑IPOs͒ featuring higher pressure than the surrounding plasma, and responsible for ϳ50% of the EϫB T radial transport, are observed in the scrape off layer ͑SOL͒ and edge of the DIII-D tokamak ͓J. Watkins et al., Rev. Sci. Instrum. 63, 4728 ͑1992͔͒. Conditional averaging reveals that the IPOs, produced at a rate of ϳ3ϫ10 3 s Ϫ1 , are positively charged and also polarized, featuring poloidal electric fields of up to 4000 V/m. The IPOs move poloidally at speeds of up to 5000 m/s and radially with EϫB T /B 2 velocities of ϳ2600 m/s near the last closed flux surface ͑LCFS͒, and ϳ330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The IPOs appear in the SOL of both L and H mode discharges and are responsible for nearly 50% of the SOL radial EϫB transport at all radii; however, they are highly reduced in absolute amplitude in H-mode conditions.
An improved energy confinement regime, I-mode is studied in Alcator C-Mod, a compact high-field divertor tokamak using Ion Cyclotron Range of Frequencies (ICRF) auxiliary heating. I-mode features an edge energy transport barrier without an accompanying particle barrier, leading to several performance benefits. H-mode energy confinement is obtained without core impurity accumulation, resulting in reduced impurity radiation with a high-Z metal wall and ICRF heating. I-mode has a stationary temperature pedestal with Edge Localized Modes (ELMs) typically absent, while plasma density is controlled using divertor cryopumping. I-mode is a confinement regime that appears distinct from both L-mode and H-mode, combining the most favorable elements of both. The I-mode regime is obtained predominately with ion ∇B drift away from the active X-point. The transition from L-mode to I-mode is primarily identified by the formation of a high temperature edge pedestal, while the edge density profile remains nearly identical to Lmode. Laser blowoff injection shows that I-mode core impurity confinement times are nearly identical with those in L-mode, despite the enhanced energy confinement. In addition a weakly coherent edge MHD mode is apparent at high frequency ~ 100-300 kHz which appears to increase particle transport in the edge. The I-mode regime has been obtained over a wide parameter space (B=3-6 T, I p =0.7-1.3 MA, q 95 =2.5-5). In general the I-mode exhibits the strongest edge T pedestal and normalized energy confinement (H 98 >1) at low q 95 (<3.5) and high heating power (P heat > 4 MW). I-mode significantly expands the operational space of ELM-free, stationary pedestals in C-Mod to T ped~1 keV and low collisionality ν* ped~0 .1, as compared to EDA H-mode with T ped < 0.6 keV, ν* ped >1. The I-mode global energy confinement has a relatively weak degradation with heating power; W th ~ I p P heat 0.7 leading to increasing H 98 with heating power.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.