Shear-induced turbulence could play a significant role in mixing momentum and chemical species in stellar radiation zones, as discussed by Zahn (1974). In this paper we analyze the results of direct numerical simulations of stratified plane Couette flows, in the limit of rapid thermal diffusion, to measure the turbulent viscosity and the turbulent diffusivity of a passive tracer as a function of the local shear and the local stratification. We find that the stability criterion proposed by Zahn (1974), namely that the product of the gradient Richardson number and the Prandtl number must be smaller than a critical values (JPr) c for instability, adequately accounts for the transition to turbulence in the flow, with (JPr) c 0.007. This result recovers and confirms the prior findings of Prat et al. (2016). Zahn's model for the turbulent diffusivity and viscosity (Zahn 1992), namely that the mixing coefficient should be proportional to the ratio of the thermal diffusivity to the gradient Richardson number, does not satisfactorily match our numerical data. It fails (as expected) in the limit of large stratification where the Richardson number exceeds the aforementioned threshold for instability, but it also fails in the limit of low stratification where the turbulent eddy scale becomes limited by the computational domain size. We propose a revised model for turbulent mixing by diffusive stratified shear instabilities, that now properly accounts for both limits, fits our data satisfactorily, and recovers Zahn's 1992 model in the limit of large Reynolds numbers.
Context. The understanding of the evolution of early-type stars is tightly related to that of the effects of rapid rotation. For massive stars, rapid rotation combines with their strong radiation-driven wind. Aims. The aim of this paper is to investigate two questions that are prerequisite to the study of the evolution of massive rapidly rotating stars: (i) What is the critical angular velocity of a star when radiative acceleration is significant in its atmosphere? (ii) How do mass and angular momentum loss depend on the rotation rate? Methods. To investigate fast rotation, which makes stars oblate, we used the 2D ESTER models and a simplified approach, the ω-model, which gives the latitudinal dependence of the radiative flux in a centrifugally flattened radiative envelope.Results. We find that radiative acceleration only mildly influences the critical angular velocity, at least for stars with masses lower than 40 M⊙. For instance, a 15 M⊙ star on the zero-age main sequence (ZAMS) would reach criticality at a rotation rate equal to 0.997 the Keplerian equatorial rotation rate. We explain this mild reduction of the critical angular velocity compared to the classical Keplerian angular velocity by the combined effects of gravity darkening and a reduced equatorial opacity that is due to the centrifugal acceleration. To answer the second question, we first devised a model of the local surface mass flux, which we calibrated with previously developed 1D models. The discontinuity (the so-called bi-stability jump) included in theṀ − T eff relation of 1D models means that the mass flux of a fast-rotating star is controlled by either a single wind or a two-wind regime. Mass and angular momentum losses are strong around the equator if the star is in the two-wind regime. We also show that the difficulty of selecting massive stars that are viewed pole-on makes detecting the discontinuity in the relation between mass loss and effective temperature also quite challenging.
The understanding of the rotational evolution of early-type stars is deeply related to that of anisotropic mass and angular momentum loss. In this paper, we aim to clarify the rotational evolution of rapidly rotating early-type stars along the main sequence (MS). We have used the 2D ESTER code to compute and evolve isolated rapidly rotating early-type stellar models along the MS, with and without anisotropic mass loss. We show that stars with Z = 0.02 and masses between 5 and 7 M⊙ reach criticality during the main sequence provided their initial angular velocity is larger than 50% of the Keplerian one. More massive stars are subject to radiation-driven winds and to an associated loss of mass and angular momentum. We find that this angular momentum extraction from the outer layers can prevent massive stars from reaching critical rotation and greatly reduce the degree of criticality at the end of the MS. Our model includes the so-called bi-stability jump of theṀ − T eff relation of 1D-models. This discontinuity now shows up in the latitude variations of the mass-flux surface density, endowing rotating massive stars with either a single-wind regime (no discontinuity) or a two-wind regime (a discontinuity). In the two-winds-regime, mass loss and angular momentum loss are strongly increased at low latitudes inducing a faster slow-down of the rotation. However, predicting the rotational fate of a massive star is difficult, mainly because of the non-linearity of the phenomena involved and their strong dependence on uncertain prescriptions. Moreover, the very existence of the bi-stability jump in mass-loss rate remains to be substantiated by observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.