We investigate universality of the Eulerian velocity structure functions using velocity fields obtained from the stereoscopic particle image velocimetry (SPIV) technique in experiments and the direct numerical simulations (DNS) of the Navier-Stokes equations. We show that the numerical and experimental velocity structure functions up to order 9 follow a loguniversality 1 ; we find that they collapse on a universal curve, if we use units that include logarithmic dependence on the Reynolds number. We then investigate the meaning and consequences of such log-universality, and show that it is connected with the properties of a "multifractal free energy", based on an analogy between multifractal and themodynamics.We show that in such a framework, the existence of a fluctuating dissipation scale is associated with a phase transition describing the relaminarisation of rough velocity fields with different Hölder exponents. Such a phase transition has been already observed using the Lagrangian velocity structure functions, but was so far believed to be out of reach for the Eulerian data. 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.