Reliable and accurate temperature measurement during microwave processing of ceramic bodies is controversial. Although thermocouples are routinely used in conventional thermal furnaces, their presence in microwave furnaces can locally distort the electromagnetic field, conduct heat away from the sample, induce thermal instabilities and microwave breakdown, and lead to serious measurement errors. These thermocouple effects have been studied and found to be more pronounced in low-and medium-loss ceramic materials. To decrease the thermocouple effects during the processing of advanced ceramic materials, an optical, noncontact temperature sensing system has been developed, calibrated, and incorporated into a computer-controlled microwave furnace.
Temperature gradients that develop in ceramic materials during microwave heating are known to be strongly dependent on the applied microwave frequency. To gain a better understanding of this dependence, identical samples of ZnO powder compacts were microwave heated at three distinct widely separated frequencies of 2.45, 30, and 83 GHz and the core and surface temperatures were simultaneously monitored. At 2.45 GHz, the approximately uniform “volumetric” heating tends to raise the temperature of the sample as a whole, but the interior becomes hotter than the exterior because of heat loss from the surface. At 30 and 83 GHz, this interior to exterior temperature difference was found to be reversed, especially for high heating rates. This reversal resulted from increased energy deposition close to the sample's surface associated with reduced skin depth. A model for solving Maxwell's equations was incorporated into a newly developed two‐dimensional (2‐D) heat transport simulation code. The numerical simulations are in agreement with the experimental results. Simultaneous application of two or more widely separated frequencies is expected to allow electronic tailoring of the temperature profile during sintering.
The effect of porosity on the complex dielectric permittivity of microwave sintered zinc oxide at room temperature and 2.45 GHz is reported. The predictions of conventional Maxwell–Garnet theory and the effective medium approximation are in poor agreement with the experimental results. Various methods are employed to investigate the system in an effort to come up with new mixing laws, including combinations of these two analytic theories and finite difference electromagnetic simulations of representative microstructures. A model that assumes the existence of dielectrically inactive, fractal-geometry boundaries between ceramic grains provides an excellent description of the results with no free parameters. It gives physical insight into the experimentally observed mixing law.
The dependence of the permittivity of porous alumina on the microstructure was studied. Three different algebraic mixing laws inaccurately predicted the measured effective permittivity of the three-phase material, which was alumina, air, and water. Finite-difference electrostatic simulations of physically realistic microstructures accurately predicted the experimental results. The electrostatic simulations also provided physical insight into the arrangement of water in the material and its significant effect on the effective permittivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.