The European Strategy Forum on Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser fields with intensities reaching up to 10-10 W cm called 'ELI' for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011-2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientific research at the frontier of knowledge involving two domains. The first one is laser-driven experiments related to nuclear physics, strong-field quantum electrodynamics and associated vacuum effects. The second is based on a Compton backscattering high-brilliance and intense low-energy gamma beam (<20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with significant societal impact are being developed. The ELI-NP research centre will be located in Măgurele near Bucharest, Romania. The project is implemented by 'Horia Hulubei' National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and multi-MeV brilliant gamma beam scientific and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The science and examples of societal applications at reach with these electromagnetic probes with much improved performances provided at this new facility will be discussed with a special focus on day-one experiments and associated novel instrumentation.
The emergence of a new era reaching beyond current state-of-the-art ultrashort and ultraintense laser technology has been enabled by the approval of around € 850 million worth of structural funds in 2011–2012 by the European Commission for the installation of Extreme Light Infrastructure (ELI). The ELI project consists of three pillars being built in the Czech Republic, Hungary, and Romania. This challenging proposal is based on recent technical progress allowing ultraintense laser fields in which intensities will soon be reaching as high as I0 ∼ 1023 W cm−2. This tremendous technological advance has been brought about by the invention of chirped pulse amplification by Mourou and Strickland. Romania is hosting the ELI for Nuclear Physics (ELI-NP) pillar in Măgurele near Bucharest. The new facility, currently under construction, is intended to serve the broad national, European, and international scientific community. Its mission covers scientific research at the frontier of knowledge involving two domains. The first is laser-driven experiments related to NP, strong-field quantum electrodynamics, and associated vacuum effects. The second research domain is based on the establishment of a Compton-backscattering-based, high-brilliance, and intense γ beam with Eγ ≲ 19.5 MeV, which represents a merger between laser and accelerator technology. This system will allow the investigation of the nuclear structure of selected isotopes and nuclear reactions of relevance, for example, to astrophysics with hitherto unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with significant societal impact will be developed. The implementation of the project started in January 2013 and is spearheaded by the ELI-NP/Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH). Experiments will begin in early 2020.
þ states, pointing to the oblate, spherical, and prolate nature of the consecutive excitations. In addition, they account for the hindrance of the E2 decay from the prolate 0 þ 4 to the spherical 2 þ 1 state, although overestimating its value. This result makes 66 Ni a unique nuclear system, apart from 236;238 U, in which a retarded γ transition from a 0 þ deformed state to a spherical configuration is observed, resembling a shape-isomerlike behavior. DOI: 10.1103/PhysRevLett.118.162502 The concept of potential energy surface (PES) is central in many areas of physics. Usually, the PES displays the potential energy of the system as a function of its geometry. As an example, the PES of a molecule expressed in such coordinates as bond length, valence angles, etc., can be used for finding the minimum energy shape or calculating chemical reaction rates [1]. The idea of potential energy surface in deformation space has also been widely applied to the nucleus at a given spin. For an even-even nucleus at spin 0, the lowest PES minimum corresponds to the ground state (g.s.), while there may exist additional (secondary) minima in which excited 0 þ states can reside: they can be interpreted as ground states of different shapes [2][3][4][5][6]. When a secondary minimum is separated from the main minimum by a high barrier, in the extreme case a long-lived isomer, called shape isomer, can be formed [7]. Shape isomerism at spin zero, so far, has clearly been observed only in actinide nuclei -these isomers decay mainly by fission, and in two cases only, 236 U and 238 U, by very retarded γ-ray branches [8][9][10][11].The existence of shape isomers in lighter systems has been a matter of debate for a long time. Already in the 1980s, a study based on microscopic Hartree-Fock plus BCS calculations, in which a large number of nuclei was surveyed, identified ten isotopes in which a deformed 0 þ state is separated from a spherical structure by a significantly high barrier:66 Ni and 68 Ni, 190;192 Pt, 206;208;210 Os, and 194;196;214
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.