Among antiferromagnetic materials, Mn 2 Au is one of the most intensively studied, and it serves as a very popular platform for testing various ideas related to antiferromagnetic magnetotransport and dynamics. Since recently, this material has also attracted considerable interest in the context of optical properties and optically-driven antiferromagnetic switching. In this work, we use first principles methods to explore the physics of charge photocurrents, spin photocurrents and inverse Faraday effect in antiferromagnetic Mn 2 Au. We predict the symmetry and magnitude of these effects, and speculate that they can be used for tracking the dynamics of staggered moments during switching. Our calculations reveal the emergence of large photocurrents of spin in collinear Mn 2 Au, whose properties can be understood as a result of a non-linear optical version of spin Hall effect − which we refer to as the photospin Hall effect − encoded into the relation between the driving charge and resulting spin photocurrents. Moreover, we suggest that even a very small canting in Mn 2 Au can give rise to colossal spin photocurrents which are chiral in flavor. We conclude that the combination of staggered magnetization with the structural and electronic properties of this material results in a unique blend of prominent photocurrents, which makes Mn 2 Au a unique platform for advanced optospintronics applications.
Orbital current has emerged over the past years as one of the key novel concepts in magnetotransport. Here, we demonstrate that laser pulses can be used to generate large and robust non-relativistic orbital currents in systems where the inversion symmetry is broken by the orbital Rashba effect. By referring to model and first principles tools, we demonstrate that orbital Rashba effect, accompanied by crystal field splitting, can mediate robust orbital photocurrents without a need for spin-orbit interaction even in metallic systems. We show that such non-relativistic orbital photocurrents are translated into derivative photocurrents of spin when relativistic effects are taken into account. We thus promote orbital photocurrents as a promising platform for optical generation of currents of angular momentum, and discuss their possible applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.