Electroplated Cu films undergo a remarkable recrystallization at room temperature that has been associated with dislocations and defects arising from the influence of surface-active additives during plating. In the process of plating, the composition of the bath changes as the organic additives are depleted by incorporation into the Cu films or electrolytic decomposition and replenished by fresh additions. Given the sensitivity of the plating process to low concentrations of additives, the properties of the plated Cu might be expected to differ between a freshly prepared bath and an older bath that has processed thousands of wafers and achieved a steady state composition of additives and by-products.In this paper we compare the recrystallization rates of Cu films deposited from two such baths on wafers with damascene trenches of widths from 0.3 to 5 μm. Films deposited from the older bath consistently recrystallize at a faster rate for all trench widths and both barrier materials (Ta, TaN) studied. The concentration of impurities is comparable in the two films. Therefore, the difference in rates is likely due to a difference in defect densities in the film due to different adsorbate/surface interactions during plating. Although the recrystallization rates vary, X-ray diffraction pole figure analysis of films plated from the two baths show no differences in texture. Sidewall growth components are visible in both sets of samples. Data on the influence of the barrier material and trench width on recrystallization rates are also presented.
Electroplated Cu films undergo a remarkable recrystallization at room temperature that has been associated with dislocations and defects arising from the influence of surface-active additives during plating. In the process of plating, the composition of the bath changes as the organic additives are depleted by incorporation into the Cu films or electrolytic decomposition and replenished by fresh additions. Given the sensitivity of the plating process to low concentrations of additives, the properties of the plated Cu might be expected to differ between a freshly prepared bath and an older bath that has processed thousands of wafers and achieved a steady state composition of additives and by-products.In this paper we compare the recrystallization rates of Cu films deposited from two such baths on wafers with damascene trenches of widths from 0.3 to 5 μm. Films deposited from the older bath consistently recrystallize at a faster rate for all trench widths and both barrier materials (Ta, TaN) studied. The concentration of impurities is comparable in the two films. Therefore, the difference in rates is likely due to a difference in defect densities in the film due to different adsorbate/surface interactions during plating. Although the recrystallization rates vary, X-ray diffraction pole figure analysis of films plated from the two baths show no differences in texture. Sidewall growth components are visible in both sets of samples. Data on the influence of the barrier material and trench width on recrystallization rates are also presented.
The paper discusses experimentally found relation between mechanical an thermal physical properties of anisotropic materials observed at the pine wood (Pínus sylvéstris L). Hardness and main components of temperature diffusivity tensor measured at the normal to the fibers, tangential and radial faces of the pine wood sample having various moisture content can be linked with linear relations. It renders possible to make express estimation of anisotropic materials mechanical properties typically requiring labor and material extensive destructive testing by means of measurement of its thermal properties using dynamic thermography.
The technology of formation of high-carbon layers on the pipes of low-carbon steel using non-vacuum electron beam cladding is analyzed. Carbon fiber fabrics are used as a carbon source. High-carbon layers are formed on the surfaces of steel pipes due to the electron beam impact. The carbon concentration in high-carbon layers reaches 5.5 wt. % and decreases toward the base metal. The hardness of the obtained coatings reaches 8 GPa. Cladding of high-carbon layers allows increasing wear resistance of the material by 23 % compared to cemented and quenched steel.
Inthepresent paper wereporton surface alloyingof cylindrical substrateswithcarbonbynon-vacuumelectron-beamprocessing. A carbon fabric was used as a source of carbon. The electron-beam processing of the carbon fiber wrapped around the cylinders led to the formation of carbon-rich layer on the surface of the samples. Thehighestconcentrationofcarbonwasreacheddirectly on thesurface of the samples and was equal to ~4.3 % (wt.). The concentration of carbon gradually decreased to ~0.8 % (wt.) towards the substrate.The surface of the reinforced material had a high level of hardness (up to 750 HV). Wear resistance,underconditions of abrasive particleimpact, increased by 15% compared to wear resistanceof the sample produced by pack carburization and quenching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.